

DATA STRUCTURES
LABORATORY MANUAL

B.TECH
(II YEAR – I SEM)

(2019-20)

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

DEPARTMENT OF INFORMATION TECHNOLOGY

VISION

 To improve the quality of technical education that provides efficient software engineers

with an attitude to adapt challenging IT needs of local, national and international arena,

through teaching and interaction with alumni and industry.

MISSION

 Department intends to meet the contemporary challenges in the field of IT and is playing a

vital role in shaping the education of the 21st century by providing unique educational and

research opportunities.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1 – ANALYTICAL SKILLS

To facilitate the graduates with the ability to visualize, gather information, articulate,

analyze, solve complex problems, and make decisions. These are essential to address the

challenges of complex and computation intensive problems increasing their productivity.

PEO2 – TECHNICAL SKILLS

To facilitate the graduates with the technical skills that prepare them for immediate

employment and pursue certification providing a deeper understanding of the technology in

advanced areas of computer science and related fields, thus encouraging to pursue higher

education and research based on their interest.

PEO3 – SOFT SKILLS

To facilitate the graduates with the soft skills that include fulfilling the mission, setting

goals, showing self-confidence by communicating effectively, having a positive attitude,

get involved in team-work, being a leader, managing their career and their life.

PEO4 – PROFESSIONAL ETHICS

To facilitate the graduates with the knowledge of professional and ethical responsibilities

by paying attention to grooming, being conservative with style, following dress codes,

safety codes, and adapting themselves to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech Information Technology, the graduates will have the

following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System:- Able to Understand the

working principles of the computer System and its components , Apply the knowledge to

build, asses, and analyze the software and hardware aspects of it .

2. The comprehensive and Applicative knowledge of Software Development:

Comprehensive skills of Programming Languages, Software process models,

methodologies, and able to plan, develop, test, analyze, and manage the software and

hardware intensive systems in heterogeneous platforms individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional,

managerial, interdisciplinary skill set, and domain specific tools in development processes,

identify the research gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

 Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multi disciplinary environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF INFORMATION TECHNOLOGY

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to the starting time),

those who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab with the

synopsis / program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim, Algorithm,

Procedure, Program, Expected Output, etc.,) filled in for the lab session.

b. Laboratory Record updated up to the last session experiments and other utensils (if any) needed

in the lab.

c. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system

allotted to you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab observation note

book, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the

discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high end branded systems, which should

be utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab

sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will attract

severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out; if anybody

found loitering outside the lab / class without permission during working hours will be treated

seriously and punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab

after completing the task (experiment) in all aspects. He/she must ensure the system / seat is

kept properly.

 HEAD OF THE DEPARTMENT PRINCIPAL

INDEX

S.No Name of the Program Page.No

1.

Write a program that uses functions to perform the following

operations on singly linked List

(i)Creation (ii) Insertion (iii) Deletion (iv) Traversal.
1

2.

Write a program that uses functions to perform the following

operations on doubly linked List

(i) Creation (ii) Insertion (iii) Deletion (iv) Traversal.
14

3.

Write a program that uses functions to perform the following

operations on circular linked List

(i)Creation (ii) Insertion (iii) Deletion (iv) Traversal.
26

4.
Write a program that implement stack (its operations) using

(i)Arrays (ii)Linked list(Pointers). 38

5.
Write a program that implement Queue (its operations) using

(i)Arrays (ii)Linked list(Pointers). 49

6.

(i)Write a program that implement Circular Queue (its

operations) using Arrays .

(ii)Write a program that use both recursive and non recursive

functions to perform the following searching operations for a

Key value in a given list of integers:

a) Linear search b) Binary search.

59

7.

Write a program that implements the following sorting

1. Bubble sort

2. Selection sort

3. Quick sort.

74

8.

Write a program that implements the following

1. Insertion sort

2. Merge sort

3. Heap sort.

82

9.
Write a program to implement all the functions of a dictionary

(ADT)using Linked List.
91

10.

Write a program to perform the following operations:

a) Insert an element into a binary search tree.

b) Delete an element from a binary search tree.

c) Search for a key element in a binary search tree.

97

11.
Write a program to implement the tree traversal methods.

104

12.

Write a program to perform the following operations:

a) Insert an element into a AVL tree.

b) Delete an element from a AVL tree.

c) Search for a key element in a AVL tree.

114

Department of IT Page 1

WEEK-1: DATE:

Aim: Write a program that uses functions to perform the following operations on Singly

 Linked List

 (i)Creation (ii) Insertion (iii) Deletion (iv) Traversal.

Description:

Linked List

When we want to work with an unknown number of data values, we use a linked list data

structure to organize that data. The linked list is a linear data structure that contains a sequence of

elements such that each element links to its next element in the sequence. Each element in a

linked list is called "Node".

Linked List can be implemented as

 1. Singly Linked List

 2. Doubly Linked List

 3. Circular Linked List

Single Linked List

Simply a list is a sequence of data, and the linked list is a sequence of data linked with

each other. The formal definition of a single linked list is as follows...

In any single linked list, the individual element is called as "Node". Every "Node"

contains two fields, data field, and the next field. The data field is used to store actual value of

the node and next field is used to store the address of next node in the sequence.

The graphical representation of a node in a single linked list is as follows...

 Example

Operations on Single Linked List

The following operations are performed on a Single Linked List

 1.Creation

 2.Insertion

 3.Deletion

 4.Display

Data Structures Lab 2019-2020

Department of IT Page 2

Before we implement actual operations, first we need to set up an empty list. First, perform the

following steps before implementing actual operations.

1.Creation

Step 1 - Define a Node structure with two members data and next

Step 2 - Define a Node pointer 'head' and set it to NULL.

2.Insertion

In a single linked list, the insertion operation can be performed in three ways. They are as

follows...

2.1 Inserting At Beginning of the list

2.2 Inserting At End of the list

2.3 Inserting At Specific location in the list

2.1 Inserting At Beginning of the list

 We can use the following steps to insert a new node at beginning of the single linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set newNode→next = NULL and head = newNode.

Step 4 - If it is Not Empty then, set newNode→next = head and head = newNode.

2.2 Inserting At End of the list

 We can use the following steps to insert a new node at end of the single linked list...

Step 1 - Create a newNode with given value and newNode → next as NULL.

Step 2 - Check whether list is Empty (head == NULL).

Step 3 - If it is Empty then, set head = newNode.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list

 (until temp → next is equal to NULL).

Data Structures Lab 2019-2020

Department of IT Page 3

Dr 2018-2019

 Step 6 - Set temp → next = newNode.

2.3 Inserting At Specific location in the list (After a Node)

 We can use the following steps to insert a new node after a node in the single linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set newNode → next = NULL and head = newNode.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the node after which

 we want to insert the newNode (until temp1 → data is equal to location, here

 location is the node value after which we want to insert the newNode).

Step 6 - Every time check whether temp is reached to last node or not. If it is reached to

 last node then display 'Given node is not found in the list!!! Insertion not

 possible!!!' and terminate the function. Otherwise move the temp to next node.

Step 7 - Finally, Set 'newNode → next = temp → next' and 'temp → next = newNode'

3. Deletion

 In a single linked list, the deletion operation can be performed in three ways. They are as

follows...

 3.1 Deleting from Beginning of the list

3.2 Deleting from End of the list

 3.3 Deleting a Specific Node

 3.1 Deleting from Beginning of the list

 We can use the following steps to delete a node from beginning of the single linked list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate

 the function.

Data Structures Lab 2019-2020

Department of IT Page 4

 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.

 Step 4 - Check whether list is having only one node (temp → next == NULL)

 Step 5 - If it is TRUE then set head = NULL and delete temp (Setting Empty list conditions)

 Step 6 - If it is FALSE then set head = temp → next, and delete temp.

 3.2 Deleting from End of the list

 We can use the following steps to delete a node from end of the single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

 terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

 initialize 'temp1' with head.

Step 4 - Check whether list has only one Node (temp1 → next == NULL)

Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate the

 function. (Setting Empty list condition)

Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node.

 Repeat the same until it reaches to the last node in the list.

 (until temp1 →next == NULL)

Step 7 - Finally, Set temp2 → next = NULL and delete temp1.

 3.3 Deleting a Specific Node from the list

 We can use the following steps to delete a specific node from the single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

 terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

Data Structures Lab 2019-2020

Department of IT Page 5

 initialize 'temp1' with head.

Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the

 last node. And every time set 'temp2 = temp1' before moving the 'temp1' to its

 next node.

Step 5 - If it is reached to the last node then display 'Given node not found in the list!

 Deletion not possible!!!'. And terminate the function.

Step 6 - If it is reached to the exact node which we want to delete, then check whether list

 is having only one node or not

Step 7 - If list has only one node and that is the node to be deleted, then

 set head = NULL and delete temp1 (free(temp1)).

Step 8 - If list contains multiple nodes, then check whether temp1 is the first node in the

 list (temp1 == head).

Step 9 - If temp1 is the first node then move the head to the next node (head = head →

 next) and delete temp1.

Step 10 - If temp1 is not first node then check whether it is last node in the list

 (temp1 → next == NULL).

Step 11 - If temp1 is last node then set temp2 → next = NULL and

 delete temp1 (free(temp1)).

Step 12 - If temp1 is not first node and not last node then set temp2 → next = temp1 →

 next and delete temp1 (free(temp1)).

4. Displaying a Single Linked List

 We can use the following steps to display the elements of a single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Data Structures Lab 2019-2020

Department of IT Page 6

Step 2 - If it is Empty then, display 'List is Empty!!!' and terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.

Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to the last

 node

Step 5 - Finally display temp → data with arrow pointing to NULL (temp → data --->

 NULL).

Source Code: To implement Singly Linked List

 #include<iostream.h>

#include<conio.h>

#include<stdlib.h>

void insertAtBeginning(int);

void insertAtEnd(int);

void insertBetween(int,int,int);

void display();

void removeBeginning();

void removeEnd();

void removeSpecific(int);

struct Node

{

 int data;

 struct Node *next;

}*head = NULL;

void main()

{

 int choice,value,choice1,loc1,loc2;

 clrscr();

 while(1){

 mainMenu:

 cout<<”\n\n****** MENU ******\n1. Insert\n2. Display\n3. Delete\n4. Exit\nEnter your

 choice: ";

 cin>>choice;

 switch(choice)

Data Structures Lab 2019-2020

Department of IT Page 7

 {

 case 1: cout<<"Enter the value to be insert: ";

 cin>>value;

 while(1)

 {

 cout<<"Where you want to insert: \n1. At Beginning\n2. At End\n3.

 Between\nEnter your choice: ";

 cin>>choice1;

 switch(choice1)

 {

 case 1: insertAtBeginning(value);

 break;

 case 2: insertAtEnd(value);

 break;

 case 3: cout<<"Enter the two values where you wanto insert: ";

 cin>>loc1>>loc2;

 insertBetween(value,loc1,loc2);

 break;

 default: cout<<"\nWrong Input!! Try again!!!\n\n";

 goto mainMenu;

 }

 goto subMenuEnd;

 }

 subMenuEnd:

 break;

 case 2: display();

 break;

 case 3: cout<<"Ho do you want to Delete: \n1. From Beginning\n2. From End\n3.

 Spesific\nEnter your choice: ";

 cin>>choice1;

 switch(choice1)

 {

 case 1: removeBeginning();

 break;

Data Structures Lab 2019-2020

Department of IT Page 8

 case 2: removeEnd();

 break;

 case 3: cout<<"Enter the value which you wanto delete: ";

 cin>>loc2;

 removeSpecific(loc2);

 break;

 default: cout<<"\nWrong Input!! Try again!!!\n\n";

 goto mainMenu;

 }

 break;

 case 4: exit(0);

 default: cout<<"\nWrong input!!! Try again!!\n\n";

 }

 }

}

void insertAtBeginning(int value)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->data = value;

 if(head == NULL)

 {

 newNode->next = NULL;

 head = newNode;

 }

 else

 {

 newNode->next = head;

 head = newNode;

 }

 cout<<"\nOne node inserted!!!\n";

}

void insertAtEnd(int value)

{

Data Structures Lab 2019-2020

Department of IT Page 9

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->data = value;

 newNode->next = NULL;

 if(head == NULL)

 head = newNode;

 else

 {

 struct Node *temp = head;

 while(temp->next != NULL)

 temp = temp->next;

 temp->next = newNode;

 }

cout<<"\nOne node inserted!!!\n";

}

void insertBetween(int value, int loc1, int loc2)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->data = value;

 if(head == NULL)

 {

 newNode->next = NULL;

 head = newNode;

 }

 else

 {

 struct Node *temp = head;

 while(temp->data != loc1 && temp->data != loc2)

 temp = temp->next;

 newNode->next = temp->next;

 temp->next = newNode;

 }

Data Structures Lab 2019-2020

Department of IT Page 10

 cout<<"\nOne node inserted!!!\n";

}

void removeBeginning()

{

 if(head == NULL)

 cout<<"\n\nList is Empty!!!";

 else

 {

 struct Node *temp = head;

 if(head->next == NULL)

 {

 head = NULL;

 free(temp);

 }

 else

 {

 head = temp->next;

 free(temp);

 cout<<"\nOne node deleted!!!\n\n";

 }

 }

}

void removeEnd()

{

 if(head == NULL)

 {

 cout<<"\nList is Empty!!!\n";

 }

 else

 {

 struct Node *temp1 = head,*temp2;

 if(head->next == NULL)

Data Structures Lab 2019-2020

Department of IT Page 11

 head = NULL;

 else

 {

 while(temp1->next != NULL)

 {

 temp2 = temp1;

 temp1 = temp1->next;

 }

 temp2->next = NULL;

 }

 free(temp1);

 cout<<"\nOne node deleted!!!\n\n";

 }

}

void removeSpecific(int delValue)

{

 struct Node *temp1 = head, *temp2;

 while(temp1->data != delValue)

 {

 if(temp1 -> next == NULL){

 cout<<"\nGiven node not found in the list!!!";

 goto functionEnd;

 }

 temp2 = temp1;

 temp1 = temp1 -> next;

 }

 temp2 -> next = temp1 -> next;

 free(temp1);

 cout<<"\nOne node deleted!!!\n\n";

 functionEnd:

}

Data Structures Lab 2019-2020

Department of IT Page 12

void display()

{

 if(head == NULL)

 {

 cout<<"\nList is Empty\n";

 }

 else

 {

 struct Node *temp = head;

 cout<<"\n\nList elements are - \n";

 while(temp->next != NULL)

 {

 cout<<temp->data<<”\t”;

 temp = temp->next;

 }

 cout<<temp->data;

 }

}

Output:

Data Structures Lab 2019-2020

Department of IT Page 13

Signature of the Faculty

Data Structures Lab 2019-2020

Department of IT Page 14

 WEEK-2 DATE:

 Aim: Write a program that uses functions to perform the following operations on doubly

 linked List (i)Creation (ii) Insertion (iii) Deletion (iv) Traversal.

 Description:

Double Linked List

In a single linked list, every node has a link to its next node in the sequence. So, we can traverse

from one node to another node only in one direction and we can not traverse back. We can solve

this kind of problem by using a double linked list. A double linked list can be defined as

follows...

Double linked list is a sequence of elements in which every element has links to its previous

element and next element in the sequence.

In a double linked list, every node has a link to its previous node and next node. So, we can

traverse forward by using the next field and can traverse backward by using the previous field.

Every node in a double linked list contains three fields and they are shown in the following

figure...

Here, 'link1' field is used to store the address of the previous node in the sequence, 'link2' field

is used to store the address of the next node in the sequence and 'data' field is used to store the

actual value of that node.

Example

Operations on Double Linked List

In a double linked list, we perform the following operations...

1. Creation

2. Insertion

3. Deletion

4. Display

Data Structures Lab 2019-2020

Department of IT Page 15

1.Creation

Step 1 - Define a Node structure with two members data and next

Step 2 - Define a Node pointer 'head' and set it to NULL.

2.Insertion

In a double linked list, the insertion operation can be performed in three ways as follows...

2.1 Inserting At Beginning of the list

2.2 Inserting At End of the list

 2.3 Inserting At Specific location in the list

 2.1 Inserting At Beginning of the list

 We can use the following steps to insert a new node at beginning of the double linked list...

Step 1 - Create a newNode with given value and newNode → previous as NULL.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, assign NULL to newNode → next and newNode to head.

Step 4 - If it is not Empty then, assign head to newNode → next and newNode to head.

 2.2 Inserting At End of the list

We can use the following steps to insert a new node at end of the double linked list...

Step 1 - Create a newNode with given value and newNode → next as NULL.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty, then assign NULL to newNode →

 previous and newNode to head.

Step 4 - If it is not Empty, then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list

 (until temp → next is equal to NULL).

Step 6 - Assign newNode to temp → next and temp to newNode → previous.

Data Structures Lab 2019-2020

Department of IT Page 16

 2.3 Inserting At Specific location in the list (After a Node)

 We can use the following steps to insert a new node after a node in the double linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, assign NULL to both newNode → previous &

 newNode → next and set newNode to head.

Step 4 - If it is not Empty then, define two node pointers temp1 & temp2 and

 initialize temp1 with head.

Step 5 - Keep moving the temp1 to its next node until it reaches to the node after which

 we want to insert the newNode (until temp1 → data is equal to location, here

 location is the node value after which we want to insert the newNode).

Step 6 - Every time check whether temp1 is reached to the last node. If it is reached to

 the last node then display 'Given node is not found in the list!!! Insertion not

 possible!!!' and terminate the function. Otherwise move the temp1 to next node.

Step7- Assign temp1→next to temp2, newNode to temp1 → next,

temp1 to newNode → previous, temp2 to

newNode → nextand newNode to temp2 → previous.

3.Deletion

 In a double linked list, the deletion operation can be performed in three ways as follows...

3.1 Deleting from Beginning of the list

3.2 Deleting from End of the list

3.3 Deleting a Specific Node

Data Structures Lab 2019-2020

Department of IT Page 17

3.1 Deleting from Beginning of the list

 We can use the following steps to delete a node from beginning of the double linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

 terminate the function.

Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize with head.

Step 4 - Check whether list is having only one node (temp → previous is equal to

 temp → next)

Step 5 - If it is TRUE, then set head to NULL and delete temp (Setting Empty

 list conditions)

Step 6 - If it is FALSE, then assign temp → next to head, NULL to

 head → previous and delete temp.

 3.2 Deleting from End of the list

We can use the following steps to delete a node from end of the double linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty, then display 'List is Empty!!! Deletion is not possible' and

 terminate the function.

Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize with head.

Step 4 - Check whether list has only one Node (temp → previous and

 temp → next both are NULL)

Step 5 - If it is TRUE, then assign NULL to head and delete temp. And terminate from

 the function. (Setting Empty list condition)

Step 6 - If it is FALSE, then keep moving temp until it reaches to the last node in the

Data Structures Lab 2019-2020

Department of IT Page 18

 list. (until temp → next is equal to NULL)

Step 7 - Assign NULL to temp → previous → next and delete temp.

3.3 Deleting a Specific Node from the list

 We can use the following steps to delete a specific node from the double linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

 terminate the function.

Step 3 - If it is not Empty, then define a Node pointer 'temp' and initialize with head.

Step 4 - Keep moving the temp until it reaches to the exact node to be deleted or to the

 last node.

Step 5 - If it is reached to the last node, then display 'Given node not found in the list!

 Deletion not possible!!!' and terminate the fuction.

Step 6 - If it is reached to the exact node which we want to delete, then check whether list

 is having only one node or not

Step 7 - If list has only one node and that is the node which is to be deleted then

 set head to NULL and delete temp (free(temp)).

Step 8 - If list contains multiple nodes, then check whether temp is the first node in the

 list (temp == head).

Step 9 - If temp is the first node, then move the head to the next node (head = head →

 next), set head of previous to NULL (head → previous = NULL) and

 delete temp.

Step 10 - If temp is not the first node, then check whether it is the last node in the list

 (temp → next == NULL).

Data Structures Lab 2019-2020

Department of IT Page 19

Step 11 - If temp is the last node then set temp of previous of next to NULL

 (temp → previous → next = NULL) and delete temp(free(temp)).

 Step 12 - If temp is not the first node and not the last node, then set temp of previous

 of next to temp of next (temp → previous → next = temp→next),temp

 of next of previous to temp of previous (temp → next → previous = temp →

 previous) and delete temp(free(temp)).

4.Displaying

We can use the following steps to display the elements of a double linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty, then display 'List is Empty!!!' and terminate the function.

Step 3 - If it is not Empty, then define a Node pointer 'temp' and initialize with head.

Step 4 - Display 'NULL <--- '.

Step 5 - Keep displaying temp → data with an arrow (<===>) until temp reaches to the

last node

Step 6 - Finally, display temp → data with arrow pointing to NULL

 (temp → data ---> NULL).

Source Code: To implement Doubly Linked List

#include<iostream.h>

#include<conio.h>

void insertAtBeginning(int);

void insertAtEnd(int);

void insertAtAfter(int,int);

void deleteBeginning();

void deleteEnd();

void deleteSpecific(int);

void display();

struct Node

{

 int data;

 struct Node *previous, *next;

}*head = NULL;

Data Structures Lab 2019-2020

Department of IT Page 20

void main()

{

 int choice1, choice2, value, location;

 clrscr();

 while(1)

 {

 cout<<"\n*********** MENU *************\n");

 cout<<"1. Insert\n2. Delete\n3. Display\n4. Exit\nEnter your choice: ";

 cin>>choice1;

 switch(choice1)

 {

 case 1: cout<<"Enter the value to be inserted: ";

 cin>>value;

 while(1)

 {

 cout<<"\nSelect from the following Inserting options\n";

 cout<<"1. At Beginning\n2. At End\n3. After a Node\n4. Cancel\nEnter

 your choice: ";

 cin>>choice2;

 switch(choice2)

 {

 case 1: insertAtBeginning(value);

 break;

 case 2: insertAtEnd(value);

 break;

 case 3: cout<<"Enter the location after which you want to insert:";

 cin>>location;

 insertAfter(value,location);

 break;

 case 4: goto EndSwitch;

 default: cout<<"\nPlease select correct Inserting option!!!\n";

 }

 }

 case 2:

 while(1)

 {

 cout<<"\nSelect from the following Deleting options\n";

 cout<<"1. At Beginning\n2. At End\n3. Specific Node\n4.

 Cancel\nEnter your choice: ";

 cin>>choice2;

 switch(choice2)

Data Structures Lab 2019-2020

Department of IT Page 21

 {

 case 1: deleteBeginning();

 break;

 case 2: deleteEnd();

 break;

 case 3: cout<<"Enter the Node value to be deleted: ";

 cin>>location;

 deleteSpecic(location);

 break;

 case 4: goto EndSwitch;

 default: cout<<"\nPlease select correct Deleting option!!!\n";

 }

 }

 EndSwitch: break;

 case 3: display();

 break;

 case 4: exit(0);

 default: cout<<"\nPlease select correct option!!!";

 }

}

 }

void insertAtBeginning(int value)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode -> data = value;

 newNode -> previous = NULL;

 if(head == NULL)

 {

 newNode -> next = NULL;

 head = newNode;

 }

 else

 {

 newNode -> next = head;

 head = newNode;

 }

 cout<<"\nInsertion success!!!";

}

void insertAtEnd(int value)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode -> data = value;

Data Structures Lab 2019-2020

Department of IT Page 22

newNode -> next = NULL;

 if(head == NULL)

 {

 newNode -> previous = NULL;

 head = newNode;

 }

 else

 {

 struct Node *temp = head;

 while(temp -> next != NULL)

 temp = temp -> next;

 temp -> next = newNode;

 newNode -> previous = temp;

 }

 cout<<"\nInsertion success!!!";

}

void insertAfter(int value, int location)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode -> data = value;

 if(head == NULL)

 {

 newNode -> previous = newNode -> next = NULL;

 head = newNode;

 }

 else

 {

 struct Node *temp1 = head, temp2;

 while(temp1 -> data != location)

 {

 if(temp1 -> next == NULL)

 {

 cout<<"Given node is not found in the list!!!";

 goto EndFunction;

 }

 else

 {

 temp1 = temp1 -> next;

 }

 }

 temp2 = temp1 -> next;

 temp1 -> next = newNode;

 newNode -> previous = temp1;

Data Structures Lab 2019-2020

Department of IT Page 23

 newNode -> next = temp2;

 temp2 -> previous = newNode;

 cout<<"\nInsertion success!!!";

 }

 EndFunction:

}

void deleteBeginning()

{

 if(head == NULL)

 cout<<"List is Empty!!! Deletion not possible!!!";

 else

 {

 struct Node *temp = head;

 if(temp -> previous == temp -> next)

 {

 head = NULL;

 free(temp);

 }

 else

 {

 head = temp -> next;

 head -> previous = NULL;

 free(temp);

 }

 cout<<"\nDeletion success!!!";

 }

 }

void deleteEnd()

{

 if(head == NULL)

 cout<<”List is Empty!!! Deletion not possible!!!";

 else

 {

 struct Node *temp = head;

 if(temp -> previous == temp -> next)

 {

 head = NULL;

 free(temp);

 }

 else

 {

 while(temp -> next != NULL)

 temp = temp -> next;

 temp -> previous -> next = NULL;

Data Structures Lab 2019-2020

Department of IT Page 24

 free(temp);

 }

 cout<<"\nDeletion success!!!";

 }

}

void deleteSpecific(int delValue)

{

 if(head == NULL)

 cout<<"List is Empty!!! Deletion not possible!!!";

 else

 {

 struct Node *temp = head;

 while(temp -> data != delValue)

 {

 if(temp -> next == NULL)

 {

 cout<<"\nGiven node is not found in the list!!!";

 goto FuctionEnd;

 }

 else

 {

 temp = temp -> next;

 }

 }

 if(temp == head)

 {

 head = NULL;

 free(temp);

 }

 else

 {

 temp -> previous -> next = temp -> next;

 free(temp);

 }

 cout<<"\nDeletion success!!!";

 }

 FuctionEnd:

}

void display()

{

 if(head == NULL)

 cout<<"\nList is Empty!!!";

 else

 {

Data Structures Lab 2019-2020

Department of IT Page 25

 struct Node *temp = head;

 cout<<"\nList elements are: \n";

 cout<<"NULL <--- ";

 while(temp -> next != NULL)

 {

 cout<<temp -> data<<”\t”;

 }

 cout<<temp -> data;

 }

 }

Output:

Signature of the Faculty

Data Structures Lab 2019-2020

Department of IT Page 26

 WEEK-3 DATE:

 Aim: Write a program that uses functions to perform the following operations on circular

 linked List

(i)Creation (ii) Insertion (iii) Deletion (iv) Traversal.

Description:

Circular Linked List

In single linked list, every node points to its next node in the sequence and the last node points

NULL. But in circular linked list, every node points to its next node in the sequence but the last

node points to the first node in the list.

A circular linked list is a sequence of elements in which every element has a link to its next

element in the sequence and the last element has a link to the first element.

That means circular linked list is similar to the single linked list except that the last node points

to the first node in the list

Example:

Operations

In a circular linked list, we perform the following operations...

1. Creation

2. Insertion

3. Deletion

4. Display

1.Creation

Step 1 - Define a Node structure with two members data and next

Step 2 - Define a Node pointer 'head' and set it to NULL.

2.Insertion

In a circular linked list, the insertion operation can be performed in three ways. They are as

follows...

2.1 Inserting At Beginning of the list

2.2 Inserting At End of the list

2.3 Inserting At Specific location in the list

Data Structures Lab 2019-2020

Department of IT Page 27

 2.1 Inserting At Beginning of the list

 We can use the following steps to insert a new node at beginning of the circular linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set head = newNode and newNode→next = head .

Step 4 - If it is Not Empty then, define a Node pointer 'temp' and initialize with 'head'.

Step 5 - Keep moving the 'temp' to its next node until it reaches to the last node (until

'temp → next == head').

Step 6 - Set 'newNode → next =head', 'head = newNode' and 'temp → next = head'.

 2.2 Inserting At End of the list

 We can use the following steps to insert a new node at end of the circular linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL).

Step 3 - If it is Empty then, set head = newNode and newNode → next = head.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list

(until temp → next == head).

Step 6 - Set temp → next = newNode and newNode → next = head.

 2.3 Inserting At Specific location in the list (After a Node)

 We can use the following steps to insert a new node after a node in the circular linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set head = newNode and newNode → next = head.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the node after which

Data Structures Lab 2019-2020

Department of IT Page 28

 we want to insert the newNode (until temp1 → data is equal to location, here

 location is the node value after which we want to insert the newNode).

Step 6 - Every time check whether temp is reached to the last node or not. If it is reached

 to last node then display 'Given node is not found in the list!!! Insertion not

 possible!!!' and terminate the function. Otherwise move the temp to next node.

Step 7 - If temp is reached to the exact node after which we want to insert the newNode

 then check whether it is last node (temp → next == head).

Step 8 - If temp is last node then set temp → next = newNode and newNode →

 next = head.

Step 9 - If temp is not last node then set newNode → next = temp → next and temp →

 next = newNode.

3. Deletion

In a circular linked list, the deletion operation can be performed in three ways those are as

follows...

3.1 Deleting from Beginning of the list

3.2 Deleting from End of the list

3.3 Deleting a Specific Node

 3.1 Deleting from Beginning of the list

 We can use the following steps to delete a node from beginning of the circular linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

 terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

 initialize both 'temp1' and 'temp2' with head.

Step 4 - Check whether list is having only one node (temp1 → next == head)

Data Structures Lab 2019-2020

Department of IT Page 29

Step 5 - If it is TRUE then set head = NULL and delete temp1 (Setting Empty list

 conditions)

Step 6 - If it is FALSE move the temp1 until it reaches to the last node.

 (until temp1 → next == head)

Step 7 - Then set head = temp2 → next, temp1 → next = head and delete temp2.

 3.2 Deleting from End of the list

 We can use the following steps to delete a node from end of the circular linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

 terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

 initialize 'temp1' with head.

Step 4 - Check whether list has only one Node (temp1 → next == head)

Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate from

 the function. (Setting Empty list condition)

Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node.

 Repeat the same until temp1 reaches to the last node in the list. (until temp1 →

 next == head)

Step 7 - Set temp2 → next = head and delete temp1.

 3.3 Deleting a Specific Node from the list

 We can use the following steps to delete a specific node from the circular linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

Data Structures Lab 2019-2020

Department of IT Page 30

 terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

 initialize 'temp1' with head.

Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the

 last node. And every time set 'temp2 = temp1' before moving the 'temp1' to its

 next node.

Step 5 - If it is reached to the last node then display 'Given node not found in the list!

 Deletion not possible!!!'. And terminate the function.

Step 6 - If it is reached to the exact node which we want to delete, then check whether list

 is having only one node (temp1 → next== head)

Step 7 - If list has only one node and that is the node to be deleted then

 set head = NULL and delete temp1 (free(temp1)).

Step 8 - If list contains multiple nodes then check whether temp1 is the first node in the

 list (temp1 == head).

Step 9 - If temp1 is the first node then set temp2 = head and keep moving temp2 to its

 next node until temp2 reaches to the last node. Then set head = head →

 next, temp2 → next = head and delete temp1.

 Step 10 - If temp1 is not first node then check whether it is last node in the list

 (temp1 → next == head).

Step 1 1- If temp1 is last node then set temp2 → next = head and

 delete temp1 (free(temp1)).

Step 12 - If temp1 is not first node and not last node then set

 temp2 → next = temp1 → next and delete temp1 (free(temp1)).

Data Structures Lab 2019-2020

Department of IT Page 31

4.Displaying a Circular Linked List

We can use the following steps to display the elements of a circular linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty, then display 'List is Empty!!!' and terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.

Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to the last

 node

Step 5 - Finally display temp → data with arrow pointing to head → data.

Source Code: To implement Circular Linked List.

#include<iostream.h>

#include<conio.h>

void insertAtBeginning(int);

void insertAtEnd(int);

void insertAtAfter(int,int);

void deleteBeginning();

void deleteEnd();

void deleteSpecific(int);

void display();

struct Node

{

 int data;

 struct Node *next;

}*head = NULL;

void main()

{

 int choice1, choice2, value, location;

 clrscr();

 while(1)

 {

 cout<<"\n*********** MENU *************\n";

 cout<<"1. Insert\n2. Delete\n3. Display\n4. Exit\nEnter your choice: ";

 cin>>choice1;

 switch(choice1)

 {

Data Structures Lab 2019-2020

Department of IT Page 32

 case 1: cout<<"Enter the value to be inserted: ";

 cin>>value;

 while(1)

 {

 cout<<"\nSelect from the following Inserting options\n";

 cout<<"1. At Beginning\n2. At End\n3. After a Node\n4. Cancel\nEnter

 your choice: ";

 cin>>choice2;

 switch(choice2)

 {

 case 1: insertAtBeginning(value);

 break;

 case 2: insertAtEnd(value);

 break;

 case 3: cout<<"Enter the location after which you want to insert:";

 cin>>location;

 insertAfter(value,location);

 break;

 case 4: goto EndSwitch;

 default: cout<<"\nPlease select correct Inserting option!!!\n";

 }

 }

 case 2: while(1)

 {

 cout<<"\nSelect from the following Deleting options\n";

 cout<<"1. At Beginning\n2. At End\n3. Specific Node\n4.

 Cancel\nEnter your choice: ";

 cin>>choice2;

 switch(choice2)

 {

 case 1: deleteBeginning();

 break;

 case 2: deleteEnd();

 break;

 case 3: cout<<"Enter the Node value to be deleted: ";

 cin>>location;

 deleteSpecic(location);

 break;

 case 4: goto EndSwitch;

 default: cout<<"\nPlease select correct Deleting option!!!\n";

 }

 }

Data Structures Lab 2019-2020

Department of IT Page 33

 EndSwitch: break;

 case 3: display();

 break;

 case 4: exit(0);

 default: cout<<"\nPlease select correct option!!!";

 }

 }

}

void insertAtBeginning(int value)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode -> data = value;

 if(head == NULL)

 {

 head = newNode;

 newNode -> next = head;

 }

 else

 {

 struct Node *temp = head;

 while(temp -> next != head)

 temp = temp -> next;

 newNode -> next = head;

 head = newNode;

 temp -> next = head;

 }

 cout<<"\nInsertion success!!!";

}

void insertAtEnd(int value)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode -> data = value;

 if(head == NULL)

 {

 head = newNode;

 newNode -> next = head;

 }

 else

 {

 struct Node *temp = head;

 while(temp -> next != head)

Data Structures Lab 2019-2020

Department of IT Page 34

 temp = temp -> next;

 temp -> next = newNode;

 newNode -> next = head;

 }

 cout<<"\nInsertion success!!!";

}

void insertAfter(int value, int location)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode -> data = value;

 if(head == NULL)

 {

 head = newNode;

 newNode -> next = head;

 }

 else

 {

 struct Node *temp = head;

 while(temp -> data != location)

 {

 if(temp -> next == head)

 {

 cout<<"Given node is not found in the list!!!";

 goto EndFunction;

 }

 else

 {

 temp = temp -> next;

 }

}

 newNode -> next = temp -> next;

 temp -> next = newNode;

 cout<<"\nInsertion success!!!";

 }

 EndFunction:

}

void deleteBeginning()

{

 if(head == NULL)

 cout<<"List is Empty!!! Deletion not possible!!!";

 else

 {

 struct Node *temp = head;

Data Structures Lab 2019-2020

Department of IT Page 35

 if(temp -> next == head)

 {

 head = NULL;

 free(temp);

 }

 else

 {

 head = head -> next;

 free(temp);

 }

 cout<<"\nDeletion success!!!";

 }

 }

void deleteEnd()

{

 if(head == NULL)

 cout<<"List is Empty!!! Deletion not possible!!!";

 else

 {

 struct Node *temp1 = head, temp2;

 if(temp1 -> next == head)

 {

 head = NULL;

 free(temp1);

 }

 else

 {

 while(temp1 -> next != head){

 temp2 = temp1;

 temp1 = temp1 -> next;

 }

 temp2 -> next = head;

 free(temp1);

 }

 cout<<"\nDeletion success!!!";

 }

}

void deleteSpecific(int delValue)

{

 if(head == NULL)

 cout<<"List is Empty!!! Deletion not possible!!!";

 else

 {

 struct Node *temp1 = head, temp2;

 while(temp1 -> data != delValue)

Data Structures Lab 2019-2020

Department of IT Page 36

 {

 if(temp1 -> next == head)

 {

 cout<<"\nGiven node is not found in the list!!!";

 goto FuctionEnd;

 }

 else

 {

 temp2 = temp1;

 temp1 = temp1 -> next;

 }

 }

 if(temp1 -> next == head)

 {

 head = NULL;

 free(temp1);

 }

 else

 {

 if(temp1 == head)

 {

 temp2 = head;

 while(temp2 -> next != head)

 temp2 = temp2 -> next;

 head = head -> next;

 temp2 -> next = head;

 free(temp1);

 }

 else

 {

 if(temp1 -> next == head)

 {

 temp2 -> next = head;

 }

 else

 {

 temp2 -> next = temp1 -> next;

 }

 free(temp1);

}

 }

 cout<<"\nDeletion success!!!";

 }

 FuctionEnd:

Data Structures Lab 2019-2020

Department of IT Page 37

}

void display()

{

 if(head == NULL)

 cout<<"\nList is Empty!!!";

 else

 {

 struct Node *temp = head;

 cout<<"\nList elements are: \n";

 while(temp -> next != head)

 {

 cout<<temp -> data;

 }

 cout<< temp -> data, head -> data;

 }

}

 Output:

Signature of the Faculty

Data Structures Lab 2019-2020

Department of IT Page 38

WEEk-4 DATE:

 Aim:Write a program that implement stack (its operations) using

 (i)Arrays (ii)Linked list(Pointers).

Description:

Stack

Stack is a linear data structure in which the insertion and deletion operations are

performed at only one end. In a stack, adding and removing of elements are performed at a single

position which is known as "top".

That means, a new element is added at top of the stack and an element is removed from

the top of the stack. In stack, the insertion and deletion operations are performed based

on LIFO(Last In First Out) principle.

In a stack, the insertion operation is performed using a function called "push" and

deletion operation is performed using a function called "pop".

 In the figure, PUSH and POP operations are performed at a top position in the stack. That

means, both the insertion and deletion operations are performed at one end (i.e., at Top).

A stack data structure can be defined as follows...

Stack is a linear data structure in which the operations are performed based on LIFO

principle.

Stack can also be defined as

"A Collection of similar data items in which both insertion and deletion operations are

performed based on LIFO principle".

Example

If we want to create a stack by inserting 10,45,12,16,35 and 50. Then 10 becomes the

bottom-most element and 50 is the topmost element. The last inserted element 50 is at Top of the

stack as shown in the image below...

Data Structures Lab 2019-2020

Department of IT Page 39

Operations on a Stack

The following operations are performed on the stack...

1. Push (To insert an element on to the stack)

2. Pop (To delete an element from the stack)

3. Display (To display elements of the stack)

Stack data structure can be implemented in two ways. They are as follows...

1. Using Arrays

2. Using Linked List

Stack Using Arrays

A stack data structure can be implemented using a one-dimensional array. But stack

implemented using array stores only a fixed number of data values. This implementation is very

simple. Just define a one dimensional array of specific size and insert or delete the values into

that array by using LIFO principle with the help of a variable called 'top'.

Initially, the top is set to -1. Whenever we want to insert a value into the stack, increment

the top value by one and then insert. Whenever we want to delete a value from the stack, then

delete the top value and decrement the top value by one.

Stack Operations

 We can Perform the following Operations on Stack

1.Push()

2.Pop()

3.Display()

A stack can be implemented using array as follows...

Before implementing actual operations, first follow the below steps to create an empty stack.

Step 1 - Include all the header files which are used in the program and define a

 constant 'SIZE' with specific value.

Step 2 - Declare all the functions used in stack implementation.

Step 3 - Create a one dimensional array with fixed size (int stack[SIZE])

Step 4 - Define a integer variable 'top' and initialize with '-1'. (int top = -1)

Step 5 - In main method, display menu with list of operations and make suitable function

 calls to perform operation selected by the user on the stack.

Data Structures Lab 2019-2020

Department of IT Page 40

1.Push(value) - Inserting value into the stack

In a stack, push() is a function used to insert an element into the stack. In a stack, the new

element is always inserted at top position. Push function takes one integer value as parameter

and inserts that value into the stack.

We can use the following steps to push an element on to the stack...

Step 1 - Check whether stack is FULL. (top == SIZE-1)

Step 2 - If it is FULL, then display "Stack is FULL!!! Insertion is not possible!!!" and

 terminate the function.

Step 3 - If it is NOT FULL, then increment top value by one (top++) and set stack[top]

 to value (stack[top] = value).

2.Pop() - Delete a value from the Stack

In a stack, pop() is a function used to delete an element from the stack. In a stack, the

element is always deleted from top position. Pop function does not take any value as parameter.

We can use the following steps to pop an element from the stack...

Step 1 - Check whether stack is EMPTY. (top == -1)

Step 2 - If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not

possible!!!" and terminate the function.

Step 3 - If it is NOT EMPTY, then delete stack[top] and decrement top value by one

(top--).

3.Display() - Displays the Elements of a Stack

We can use the following steps to display the elements of a stack...

Step 1 - Check whether stack is EMPTY. (top == -1)

Step 2 - If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the function.

Step 3 - If it is NOT EMPTY, then define a variable 'i' and initialize with top.

 Display stack[i] value and decrement i value by one (i--).

Step 4 - Repeat above step until i value becomes '0'.

Source Code: To implement Stack Using Arrays

#include<iostream.h>

Data Structures Lab 2019-2020

Department of IT Page 41

#include<conio.h>

#define SIZE 10

void push(int);

void pop();

void display();

int stack[SIZE], top = -1;

void main()

{

 int value, choice;

 clrscr();

 while(1){

 cout<<"\n\n***** MENU *****\n";

 cout<<"1. Push\n2. Pop\n3. Display\n4. Exit";

 cout<<"\nEnter your choice: ";

 cin>>choice;

 switch(choice)

 {

 case 1: cout<<"Enter the value to be insert: ";

 cin>>value;

 push(value);

 break;

 case 2: pop();

 break;

Data Structures Lab 2019-2020

Department of IT Page 42

 case 3: display();

 break;

 case 4: exit(0);

 default: cout<<"\nWrong selection!!! Try again!!!";

 }

 }

}

void push(int value)

{

 if(top == SIZE-1)

 cout<<"\nStack is Full!!! Insertion is not possible!!!";

 else

 {

 top++;

 stack[top] = value;

 cout<<"\nInsertion success!!!";

 }

}

void pop()

{

 if(top == -1)

 cout<<"\nStack is Empty!!! Deletion is not possible!!!";

Data Structures Lab 2019-2020

Department of IT Page 43

 else

 {

 cout<<"\nDeleted :"<<stack[top]);

 top--;

 }

 }

void display()

{

 if(top == -1)

 cout<<"\nStack is Empty!!!";

 else

 {

 int i;

 cout<<"\nStack elements are:\n";

 for(i=top; i>=0; i--)

 cout<<stack[i];

 }

 }

Output:

Signature of the Faculty

Data Structures Lab 2019-2020

Department of IT Page 44

(ii) Stack Using Linked List

The major problem with the stack implemented using an arrays is, it works only for a

fixed number of data values. That means the amount of data must be specified at the beginning

of the implementation itself.

Stack implemented using an array is not suitable, when we don't know the size of data

which we are going to use. A stack data structure can be implemented by using a linked list data

structure.

The stack implemented using linked list can work for an unlimited number of values.

That means, stack implemented using linked list works for the variable size of data. So, there is

no need to fix the size at the beginning of the implementation. The Stack implemented using

linked list can organize as many data values as we want.

 In linked list implementation of a stack, every new element is inserted as 'top' element.

That means every newly inserted element is pointed by 'top'. Whenever we want to remove an

element from the stack, simply remove the node which is pointed by 'top' by moving 'top' to its

previous node in the list. The next field of the first element must be always NULL.

Example

In the above example, the last inserted node is 99 and the first inserted node is 25. The order of

elements inserted is 25, 32,50 and 99.

Stack Operations using Linked List

We can Perform the Following Operations on Stack Using Linked List (i.e)

1. Push()

2. Pop()

3. Display()

To implement a stack using a linked list, we need to set the following things before

implementing actual operations.

Step 1 - Include all the header files which are used in the program. And declare all

 the user defined functions.

Step 2 - Define a 'Node' structure with two members data and next.

Step 3 - Define a Node pointer 'top' and set it to NULL.

Step 4 - Implement the main method by displaying Menu with list of operations and

Data Structures Lab 2019-2020

Department of IT Page 45

 make suitable function calls in the mainmethod.

1.Push(value) - Inserting an element into the Stack

We can use the following steps to insert a new node into the stack...

Step 1 - Create a newNode with given value.

Step 2 - Check whether stack is Empty (top == NULL)

Step 3 - If it is Empty, then set newNode → next = NULL.

Step 4 - If it is Not Empty, then set newNode → next = top.

Step 5 - Finally, set top = newNode.

2.Pop() - Deleting an Element from a Stack

We can use the following steps to delete a node from the stack...

Step 1 - Check whether stack is Empty (top == NULL).

Step 2 - If it is Empty, then display "Stack is Empty!!! Deletion is not possible!!!" and

 terminate the function

Step 3 - If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'.

Step 4 - Then set 'top = top → next'.

Step 5 - Finally, delete 'temp'. (free(temp)).

3.Display() - Displaying stack of elements

We can use the following steps to display the elements (nodes) of a stack...

Step 1 - Check whether stack is Empty (top == NULL).

Step 2 - If it is Empty, then display 'Stack is Empty!!!' and terminate the function.

Step 3 - If it is Not Empty, then define a Node pointer 'temp' and initialize with top.

Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same

 until temp reaches to the first node in the stack. (temp → next != NULL).

Step 5 - Finally! Display 'temp → data ---> NULL'.

Data Structures Lab 2019-2020

Department of IT Page 46

Source Code: To Implement Stack Using Linked List

#include<iostream.h>

#include<conio.h>

struct Node

{

 int data;

 struct Node *next;

}*top = NULL;

void push(int);

void pop();

void display();

void main()

{

 int choice, value;

 clrscr();

 cout<<"\n:: Stack using Linked List ::\n";

 while(1)

 {

 cout<<"\n****** MENU ******\n";

 cout<<"1. Push\n2. Pop\n3. Display\n4. Exit\n";

 cout<<"Enter your choice: ";

 cin>>choice;

 switch(choice)

 {

 case 1: cout<<"Enter the value to be insert: ";

 cin>>value;

 push(value);

 break;

 case 2: pop();

 break;

 case 3: display(); break;

 case 4: exit(0);

 default: cout<<"\nWrong selection!!! Please try again!!!\n";

 }

Data Structures Lab 2019-2020

Department of IT Page 47

 }

}

void push(int value)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->data = value;

 if(top == NULL)

 newNode->next = NULL;

 else

 newNode->next = top;

 top = newNode;

 cout<<"\nInsertion is Success!!!\n";

}

void pop()

{

 if(top == NULL)

 cout<<"\nStack is Empty!!!\n";

 else

 {

 struct Node *temp = top;

 cout<<"\nDeleted element:", temp->data;

 top = temp->next;

 free(temp);

 }

}

void display()

{

 if(top == NULL)

 cout<<"\nStack is Empty!!!\n";

 else

 {

 struct Node *temp = top;

 while(temp->next != NULL)

Data Structures Lab 2019-2020

Department of IT Page 48

 {

 cout<<temp->data;

 temp = temp -> next;

 }

 cout<<temp->data;

 }

 }

Output:

Signature of the Faculty

Data Structures Lab 2019-2020

Department of IT Page 49

WEEK-5 DATE:

Aim: Write a program that implement Queue (its operations) using

 (i)Arrays (ii)Linked list(Pointers).

Description:

Queue Using Arrays

A queue data structure can be implemented using one dimensional array. The queue

implemented using array stores only fixed number of data values.

The implementation of queue data structure using array is very simple. Just define a one

dimensional array of specific size and insert or delete the values into that array by using FIFO

(First In First Out) principle with the help of variables 'front' and 'rear'. Initially both 'front'

and 'rear' are set to -1.

Whenever, we want to insert a new value into the queue, increment 'rear' value by one

and then insert at that position. Whenever we want to delete a value from the queue, then delete

the element which is at 'front' position and increment 'front' value by one.

Queue Operations using Array

 We can Perform the following operations on Queue

 1.enQueue()

 2.deQueue()

 3.Display()

Before we implement actual operations, first follow the below steps to create an empty queue.

Step 1 - Include all the header files which are used in the program and define a

 constant 'SIZE' with specific value.

Step 2 - Declare all the user defined functions which are used in queue

 implementation.

Step 3 - Create a one dimensional array with above defined SIZE (int

 queue[SIZE]).

Step 4 - Define two integer variables 'front' and 'rear' and initialize both with '-1'.

 (int front = -1, rear = -1).

Step 5 - Then implement main method by displaying menu of operations list and make

Data Structures Lab 2019-2020

Department of IT Page 50

 suitable function calls to perform operation selected by the user on queue.

1.enQueue(value) - Inserting value into the queue

In a queue data structure, enQueue() is a function used to insert a new element into the

queue. In a queue, the new element is always inserted at rear position. The enQueue() function

takes one integer value as a parameter and inserts that value into the queue. We can use the

following steps to insert an element into the queue...

Step 1 - Check whether queue is FULL. (rear == SIZE-1)

Step 2 - If it is FULL, then display "Queue is FULL!!! Insertion is not

 possible!!!" and terminate the function.

Step 3 - If it is NOT FULL, then increment rear value by one (rear++) and

 set queue[rear] = value.

2.deQueue() - Deleting a value from the Queue

In a queue data structure, deQueue() is a function used to delete an element from the

queue. In a queue, the element is always deleted from front position. The deQueue() function

does not take any value as parameter. We can use the following steps to delete an element from

the queue...

Step 1 - Check whether queue is EMPTY. (front == rear)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not

 possible!!!" and terminate the function.

Step 3 - If it is NOT EMPTY, then increment the front value by one (front ++). Then

 display queue[front] as deleted element. Then check whether

 both front and rear are equal (front == rear), if it TRUE, then set

 both front and rear to '-1' (front = rear = -1).

3.Display() - Displays the elements of a Queue

 We can use the following steps to display the elements of a queue...

Data Structures Lab 2019-2020

Department of IT Page 51

Step 1 - Check whether queue is EMPTY. (front == rear)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the

 function.

Step 3 - If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front+1'.

Step 4 - Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same

 until 'i' value reaches to rear (i <= rear).

Source Code: To implement Queue using Arrays

#include<iostream.h>

#include<conio.h>

#define SIZE 10

void enQueue(int);

void deQueue();

void display();

int queue[SIZE], front = -1, rear = -1;

void main()

{

 int value, choice;

 clrscr();

 while(1){

 cout<<"\n\n***** MENU *****\n";

 cout<<"1. Insertion\n2. Deletion\n3. Display\n4. Exit";

 cout<<"\nEnter your choice: ";

 cin>>choice;

 switch(choice){

 case 1: cout<<"Enter the value to be insert: ";

 cin>>value;

 enQueue(value);

 break;

 case 2: deQueue();

 break;

 case 3: display();

 break;

Data Structures Lab 2019-2020

Department of IT Page 52

 case 4: exit(0);

 default: cout<<"\nWrong selection!!! Try again!!!";

 }

 }

}

void enQueue(int value){

 if(rear == SIZE-1)

 cout<<"\nQueue is Full!!! Insertion is not possible!!!";

 else{

 if(front == -1)

 front = 0;

 rear++;

 queue[rear] = value;

 cout<<"\nInsertion success!!!";

 }

}

void deQueue()

{

 if(front == rear)

 cout<<"\nQueue is Empty!!! Deletion is not possible!!!";

 else

 {

 cout<<"\nDeleted : %d", queue[front];

 front++;

 if(front == rear)

 front = rear = -1;

 }

}

void display()

 {

 if(rear == -1)

 cout<<"\nQueue is Empty!!!";

 else

 {

 int i;

Data Structures Lab 2019-2020

Department of IT Page 53

 cout<<"\nQueue elements are:\n";

 for(i=front; i<=rear; i++)

 cout<<queue[i];

 }

}

Output:

Signature of the Faculty

Data Structures Lab 2019-2020

Department of IT Page 54

II. Queue Using Linked List

The major problem with the queue implemented using an array is, It will work for an

only fixed number of data values. That means, the amount of data must be specified at the

beginning itself. Queue using an array is not suitable when we don't know the size of data which

we are going to use.

A queue data structure can be implemented using a linked list data structure. The queue

which is implemented using a linked list can work for an unlimited number of values. That

means, queue using linked list can work for the variable size of data (No need to fix the size at

the beginning of the implementation).

The Queue implemented using linked list can organize as many data values as we want.

In linked list implementation of a queue, the last inserted node is always pointed by 'rear' and

the first node is always pointed by 'front'.

Example

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first inserted

node is 10 and it is pointed by 'front'. The order of elements inserted is 10, 15, 22 and 50.

Queue Operations using Array

 We can Perform the following operations on Queue

 1.enQueue()

 2.deQueue()

 3.Display()

To implement queue using linked list, we need to set the following things before implementing

actual operations.

Step 1 - Include all the header files which are used in the program. And declare

 all the user defined functions.

Step 2 - Define a 'Node' structure with two members data and next.

Step 3 - Define two Node pointers 'front' and 'rear' and set both to NULL.

Step 4 - Implement the main method by displaying Menu of list of operations and

 make suitable function calls in the main method to perform user selected

 operation.

Data Structures Lab 2019-2020

Department of IT Page 55

1.enQueue(value) - Inserting an element into the Queue

 We can use the following steps to insert a new node into the queue...

 Step 1 - Create a newNode with given value and set 'newNode → next' to NULL.

 Step 2 - Check whether queue is Empty (rear == NULL)

 Step 3 - If it is Empty then, set front = newNode and rear = newNode.

 Step 4 - If it is Not Empty then, set rear → next = newNode and rear = newNode.

2.deQueue() - Deleting an Element from Queue

 We can use the following steps to delete a node from the queue...

Step 1 - Check whether queue is Empty (front == NULL).

Step 2 - If it is Empty, then display "Queue is Empty!!! Deletion is not

 possible!!!" and terminate from the function

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'.

Step 4 - Then set 'front = front → next' and delete 'temp' (free(temp)).

3.Display() - Displaying the elements of Queue

 We can use the following steps to display the elements (nodes) of a queue...

Step 1 - Check whether queue is Empty (front == NULL).

Step 2 - If it is Empty then, display 'Queue is Empty!!!' and terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with front.

Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same until

'temp' reaches to 'rear' (temp → next != NULL).

Step 5 - Finally! Display 'temp → data ---> NULL'.

Source Code:To implement Queue using Linked List

#include<iostream.h>

#include<conio.h>

Data Structures Lab 2019-2020

Department of IT Page 56

struct Node

{

 int data;

 struct Node *next;

}*front = NULL,*rear = NULL;

void insert(int);

void delete();

void display();

void main()

{

 int choice, value;

 clrscr();

 cout<<"\n:: Queue Implementation using Linked List ::\n";

 while(1){

 cout<<"\n****** MENU ******\n";

 cout<<"1. Insert\n2. Delete\n3. Display\n4. Exit\n";

 cout<<"Enter your choice: ";

 cin>>choice);

 switch(choice){

 case 1: cout<<"Enter the value to be insert: ";

 cin>>value;

 insert(value);

 break;

 case 2: delete(); break;

 case 3: display(); break;

 case 4: exit(0);

 default: cout<<"\nWrong selection!!! Please try again!!!\n";

 }

 }

}

void insert(int value)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->data = value;

Data Structures Lab 2019-2020

Department of IT Page 57

 newNode -> next = NULL;

 if(front == NULL)

 front = rear = newNode;

 else{

 rear -> next = newNode;

 rear = newNode;

 }

 cout<<"\nInsertion is Success!!!\n";

}

void delete()

{

 if(front == NULL)

 cout<<"\nQueue is Empty!!!\n";

 else{

 struct Node *temp = front;

 front = front -> next;

 cout<<"\nDeleted element: %d\n", temp->data;

 free(temp);

 }

}

void display()

{

 if(front == NULL)

 cout<<"\nQueue is Empty!!!\n";

 else{

 struct Node *temp = front;

 while(temp->next != NULL){

 cout<<temp->data;

 temp = temp -> next;

 }

 cout<<temp->data;

 }

}

Data Structures Lab 2019-2020

Department of IT Page 58

Output:

Signature of the Faculty

Department of IT Page 59

WEEK-6: DATE:

(i)Write a program that implement Circular Queue (its operations) using Arrays .

(ii)Write a program that use both recursive and non recursive functions to perform the following

searching operations for a Key value in a given list of integers:

 a) Linear search b) Binary search.

 Aim:Write a program that implement Circular Queue (its operations) using Arrays .

Description:

Circular Queue

In a normal Queue Data Structure, we can insert elements until queue becomes full. But

once the queue becomes full, we can not insert the next element until all the elements are deleted

from the

The queue after inserting all the elements into it is as follows...

Now consider the following situation after deleting three elements from the queue...

This situation also says that Queue is Full and we cannot insert the new element because

'rear' is still at last position. In the above situation, even though we have empty positions in the

queue we can not make use of them to insert the new element. This is the major problem in a

normal queue data structure. To overcome this problem we use a circular queue data structure.

 Circular Queue

A Circular Queue can be defined as follows...

A circular queue is a linear data structure in which the operations are performed based on

FIFO (First In First Out) principle and the last position is connected back to the first

position to make a circle.

Graphical representation of a circular queue is as follows...

Data Structures Lab 2019-2020

Department of IT Page 60

Implementation of Circular Queue

 To implement a circular queue data structure using an array, we first perform the

following steps before we implement actual operations.

Step 1 - Include all the header files which are used in the program and define a

 constant 'SIZE' with specific value.

Step 2 - Declare all user defined functions used in circular queue

 implementation.

Step 3 - Create a one dimensional array with above defined SIZE (int cQueue[SIZE])

Step 4 - Define two integer variables 'front' and 'rear' and initialize both with '-1'.

 (int front = -1, rear = -1)

Step 5 - Implement main method by displaying menu of operations list and make suitable

 function calls to perform operation selected by the user on circular queue.

1.enQueue(value) - Inserting value into the Circular Queue

In a circular queue, enQueue() is a function which is used to insert an element into the

circular queue. In a circular queue, the new element is always inserted at rear position. The

enQueue() function takes one integer value as parameter and inserts that value into the circular

queue. We can use the following steps to insert an element into the circular queue...

Step 1 - Check whether queue is FULL.

 ((rear == SIZE-1 && front == 0) || (front == rear+1))

Data Structures Lab 2019-2020

Department of IT Page 61

Step 2 - If it is FULL, then display "Queue is FULL!!! Insertion is not

 possible!!!" and terminate the function.

Step 3 - If it is NOT FULL, then check rear == SIZE - 1 && front != 0 if it is TRUE,

 then set rear = -1.

Step 4 - Increment rear value by one (rear++), set queue[rear] = value and check

 'front == -1' if it is TRUE, then set front = 0.

2.deQueue() - Deleting a value from the Circular Queue

In a circular queue, deQueue() is a function used to delete an element from the circular

queue. In a circular queue, the element is always deleted from front position. The deQueue()

function doesn't take any value as a parameter. We can use the following steps to delete an

element from the circular queue...

Step 1 - Check whether queue is EMPTY. (front == -1 && rear == -1)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not

 possible!!!" and terminate the function.

Step 3 - If it is NOT EMPTY, then display queue[front] as deleted element and

 increment the front value by one (front ++). Then check whether front ==

 SIZE, if it is TRUE, then set front = 0. Then check whether both front –

 1 and rear are equal (front -1 == rear), if it TRUE, then set

 both front and rear to '-1' (front = rear = -1).

3.Display() - Displays the elements of a Circular Queue

We can use the following steps to display the elements of a circular queue...

Step 1 - Check whether queue is EMPTY. (front == -1)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the

 function.

Step 3 - If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front'.

Step 4 - Check whether 'front <= rear', if it is TRUE, then display 'queue[i]' value and

Data Structures Lab 2019-2020

Department of IT Page 62

 increment 'i' value by one (i++). Repeat the same until 'i <= rear'

 becomes FALSE.

Step 5 - If 'front <= rear' is FALSE, then display 'queue[i]' value and increment 'i' value

 by one (i++). Repeat the same until'i <= SIZE - 1' becomes FALSE.

Step 6 - Set i to 0.

Step 7 - Again display 'cQueue[i]' value and increment i value by one (i++). Repeat the

 same until 'i <= rear' becomes FALSE.

Source Code: To implement Circular Queue using Arrays.

#include<iostream.h>

#include<conio.h>

#define SIZE 5

void enQueue(int);

void deQueue();

void display();

int cQueue[SIZE], front = -1, rear = -1;

void main()

{

 int choice, value;

 clrscr();

 while(1){

 cout<<"\n****** MENU ******\n";

 cout<<"1. Insert\n2. Delete\n3. Display\n4. Exit\n";

 cout<<"Enter your choice: ";

 cin>>choice;

 switch(choice){

 case 1: cout<<"\nEnter the value to be insert: ";

 cin>>value;

 enQueue(value);

 break;

 case 2: deQueue();

Data Structures Lab 2019-2020

Department of IT Page 63

 break;

 case 3: display();

 break;

 case 4: exit(0);

 default: cout<<"\nPlease select the correct choice!!!\n";

 }

 }

}

void enQueue(int value)

{

 if((front == 0 && rear == SIZE - 1) || (front == rear+1))

 cout<<"\nCircular Queue is Full! Insertion not possible!!!\n";

 else{

 if(rear == SIZE-1 && front != 0)

 rear = -1;

 cQueue[++rear] = value;

 cout<<"\nInsertion Success!!!\n";

 if(front == -1)

 front = 0;

 }

}

void deQueue()

{

 if(front == -1 && rear == -1)

 cout<<"\nCircular Queue is Empty! Deletion is not possible!!!\n";

 else{

 cout<<"\nDeleted element :"<<cQueue[front++];

 if(front == SIZE)

 front = 0;

 if(front-1 == rear)

 front = rear = -1;

 }

}

void display()

Data Structures Lab 2019-2020

Department of IT Page 64

{

 if(front == -1)

 cout<<"\nCircular Queue is Empty!!!\n";

 else{

 int i = front;

 cout<<"\nCircular Queue Elements are : \n";

 if(front <= rear){

 while(i <= rear)

 cout<<”\t”<<cQueue[i++];

 }

 else{

 while(i <= SIZE - 1)

 cout<<”\t”<< cQueue[i++];

 i = 0;

 while(i <= rear)

 cout<<"\t"<<cQueue[i++];

 }

 }

}

Output:

Signature of the Faculty

Data Structures Lab 2019-2020

Department of IT Page 65

Aim: write a C++ programs to implement recursive and non recursive

i) Linear search ii) Binary Search

Description:

i) LINEAR SEARCH (SEQUENTIAL SEARCH):

 Search begins by comparing the first element of the list with the target element. If it

matches, the search ends. Otherwise, move to next element and compare. In this way, the

target element is compared with all the elements until a match occurs. If the match do not

occur and there are no more elements to be compared, conclude that target element is absent

in the list.

Algorithm for Linear search

Linear_Search (A[], N, val , pos)

Step 1 : Set pos = -1 and k = 0

Step 2 : Repeat while k < N Begin

Step 3 : if A[k] = val

Set pos = k

print pos

Goto step 5

End while

Step 4 : print “Value is not present”

Step 5 : Exit

Source code: Non recursive C++ program for Linear search

#include<iostream>

using namespace std;

int Lsearch(int list[],int n,int key);

Data Structures Lab 2019-2020

Department of IT Page 66

int main()

{

int n,i,key,list[25],pos;

cout<<"enter no of elements\n";

cin>>n;

cout<<"enter "<<n<<" elements ";

for(i=0;i<n;i++)

 cin>>list[i];

cout<<"enter key to search";

cin>>key;

pos= Lsearch (list,n,key);

if(pos==-1)

cout<<"\nelement not found";

 else

cout<<"\n element found at index "<<pos;

}

/*function for linear search*/

int Lsearch(int list[],int n,int key)

{

 int i,pos=-1;

for(i=0;i<n;i++)

if(key==list[i])

{

pos=i;

break;

}

return pos;

}

Output:

Signature of the Faculty

Data Structures Lab 2019-2020

Department of IT Page 67

Source code: Recursive C++ program for Linear search

#include<iostream>

using namespace std;

int Rec_Lsearch(int list[],int n,int key);

int main()

{

 int n,i,key,list[25],pos;

cout<<"enter no of elements\n";

cin>>n;

cout<<"enter "<<n<<" elements ";

for(i=0;i<n;i++)

 cin>>list[i];

cout<<"enter key to search";

cin>>key;

pos=Rec_Lsearch(list,n,key);

if(pos==-1)

cout<<"\nelement not found";

else

cout<<"\n element found at index "<<pos;

}

/*recursive function for linear search*/

int Rec_Lsearch(int list[],int n,int key)

{

Data Structures Lab 2019-2020

Department of IT Page 68

if(n<=0)

return -1;

if(list[n]==key)

return n;

else

return Rec_Lsearch(list,n-1,key);

}

Output:

Signature of the Faculty

(ii)Binary Search:

 Before searching, the list of items should be sorted in ascending order. First compare

the key value with the item in the mid position of the array.

 If there is a match, we can return immediately the position. if the value is less than the

element in middle location of the array, the required value is lie in the lower half of the array.

 If the value is greater than the element in middle location of the array, the required

value is lie in the upper half of the array. We repeat the above procedure on the lower half or

upper half of the array.

Algorithm:

Binary_Search (A [], U_bound, VAL)

Step 1 : set BEG = 0 , END = U_bound , POS = -1

Step 2 : Repeat while (BEG <= END)

Step 3 :set MID = (BEG + END) / 2

Data Structures Lab 2019-2020

Department of IT Page 69

Step 4 :if A [MID] == VAL then

POS = MID

print VAL “ is available at “, POS

GoTo Step 6

End if

if A [MID] > VAL then

set END = MID – 1

Else

set BEG = MID + 1

End if

End while

Step 5 : if POS = -1 then

print VAL “ is not present “

End if

Step 6 : EXIT

Source code: Non recursive C++ program for binary search

#include<iostream>

using namespace std;

int binary_search(int list[],int key,int low,int high);

int main()

{

int n,i,key,list[25],pos;

cout<<"enter no of elements\n" ;

Data Structures Lab 2019-2020

Department of IT Page 70

cin>>n;

cout<<"enter "<<n<<" elements in ascending order ";

for(i=0;i<n;i++)

cin>>list[i];

cout<<"enter key to search" ;

cin>>key;

pos=binary_search(list,key,0,n-1);

if(pos==-1)

cout<<"element not found" ;

else

cout<<"element found at index "<<pos;

}

/* function for binary search*/

int binary_search(int list[],int key,int low,int high)

{

int mid,pos=-1;

while(low<=high)

{

mid=(low+high)/2;

if(key==list[mid])

{

pos=mid;

break;

}

else if(key<list[mid])

Data Structures Lab 2019-2020

Department of IT Page 71

high=mid-1;

else

low=mid+1;

}

return pos;

}

Output:

Signature of the Faculty

Source code: Recursive C++ program for binary search

#include<iostream>

using namespace std;

int rbinary_search(int list[],int key,int low,int high);

int main()

{

int n,i,key,list[25],pos;

cout<<"enter no of elements\n" ;

Data Structures Lab 2019-2020

Department of IT Page 72

cin>>n;

cout<<"enter "<<n<<" elements in ascending order ";

for(i=0;i<n;i++)

cin>>list[i];

cout<<"enter key to search" ;

cin>>key;

pos=rbinary_search(list,key,0,n-1);

if(pos==-1)

cout<<"element not found" ;

else

cout<<"element found at index "<<pos;

}

/*recursive function for binary search*/

int rbinary_search(int list[],int key,int low,int high)

{

int mid,pos=-1;

if(low<=high)

{

mid=(low+high)/2;

if(key==list[mid])

{

pos=mid;

Data Structures Lab 2019-2020

Department of IT Page 73

return pos;

}

else if(key<list[mid])

return rbinary_search(list,key,low,mid-1);

else

return rbinary_search(list,key,mid+1,high);

}

return pos;

}

Output:

Signature of the Faculty

Data Structures Lab 2019-2020

Department of IT Page 74

WEEK-7: DATE:

Aim: write a C++ programs to implement

 i) Bubble sort ii) Selection sort iii) quick sort

 Description:

i)Bubble sort

 The bubble sort is an example of exchange sort.In this method,repetitive comparisonis

performed among elements and essential swapping of elements is done. Bubble sort is commonly

used in sorting algorithms.

 It is easy to understand but time consuming i.e. takes more number of comparisons to

sort a list. In this type, two successive elements are comparedand swapping is

done.Thus,step-by-step entire array elements are checked. It is different from the selection sort.

 Instead of searching the minimum element and then applying swapping, two records are

swapped instantly upon noticing that they are not in order.

Algorithm:

Bubble_Sort (A [] , N)

Step 1: Start

Step 2: Take an array of n elements

Step 3: for i=0,………….n-2

Step 4: for j=i+1,…….n-1

Step 5: if arr[j]>arr[j+1] then

 Interchange arr[j] and arr[j+1]

 End of if

Step 6: Print the sorted array arr

Step 7:Stop

Data Structures Lab 2019-2020

Department of IT Page 75

Source code: Program to sort a list of numbers using bubble sort

#include<iostream>

using namespace std;

void bubble_sort(int list[30],int n);

int main()

{

int n,i;

int list[30];

cout<<"enter no of elements\n";

cin>>n;

cout<<"enter "<<n<<" numbers ";

for(i=0;i<n;i++)

cin>>list[i];

bubble_sort (list,n);

cout<<" after sorting\n";

for(i=0;i<n;i++)

cout<<list[i]<<endl;

return 0;

}

void bubble_sort (int list[30],int n)

{

int temp ;

Data Structures Lab 2019-2020

Department of IT Page 76

int i,j;

for(i=0;i<n;i++)

for(j=0;j<n-1;j++)

if(list[j]>list[j+1])

{

temp=list[j];

list[j]=list[j+1];

list[j+1]=temp;

}

}

Output:

Signature of Faculty

ii) Selection sort (Select the smallest and Exchange):

 The first item is compared with the emaining n-1 items, and whichever of all is

lowest, is put in the first position. Then the second item from the list is taken and

compared with the remaining (n-2) items, if an item with a value less than that of the

second item is found on the (n-2) items, it is swapped (Interchanged) with the second

item of the list and so on.

Algorithm:

Selection_Sort (A[] , N)

Step 1 : start Begin

Data Structures Lab 2019-2020

Department of IT Page 77

 Step 2 : Set POS = K

 Step 3 : Repeat for J = K + 1 to N –1

 Begin

 If A[J] < A [POS]

 Set POS = J

 Step 4 : End For Swap A [K] End For with A [POS]

 Step 5 : Stop

Source code: Program to implement selection sort

 #include<iostream>

 using namespace std;

 void selection_sort (int list[],int n);

 int main()

 {

 int n,i;

 int list[30];

 cout<<"enter no of elements\n";

 cin>>n;

 cout<<"enter "<<n<<" numbers ";

 for(i=0;i<n;i++)

 cin>>list[i];

 selection_sort (list,n);

 cout<<" after sorting\n";

 for(i=0;i<n;i++)

 cout<<list[i]<<endl;

 return 0;

Data Structures Lab 2019-2020

Department of IT Page 78

}

void selection_sort (int list[],int n)

{

 int min,temp,i,j;

 for(i=0;i<n;i++)

{

min=i;

for(j=i+1;j<n;j++)

{

if(list[j]<list[min])

min=j;

}

temp=list[i];

list[i]=list[min];

list[min]=temp;

}

}

Output:

Signature of Faculty

Data Structures Lab 2019-2020

Department of IT Page 79

iii) Quick sort:

 It is a divide and conquer algorithm. Quick sort first divides a large array into

two smaller sub-arrays: the low elements and the high elements. Quick sort can then

recursively sort the sub-arrays.

ALGORITHM:

Step 1: Pick an element, called a pivot, from the array.

Step 2: Partitioning: reorder the array so that all elements with values less than the pivot

 come before the pivot, while all elements with values greater than the pivot come

 after it (equal values can go either way). After this partitioning, the pivot is in its final

 position. This is called the partition operation.

Step 3: Recursively apply the above steps to the sub-array of elements with smaller values

 and separately to the sub-array of elements with greater values.

Source code: To implement Quick sort

#include<iostream.h>

using namespace std;

void quicksort(int x[],int Lb,int Ub)

{

 int down,up,pivot,t;

if(Lb<Ub)

{

down=Lb;

up=Ub;

pivot=down;

while(down<up)

{

while((x[down]<=x[pivot])&&(down<Ub))down++;

while(x[up]>x[pivot])

up--;

Data Structures Lab 2019-2020

Department of IT Page 80

if(down<up)

{

t=x[down];

x[down]=x[up];

x[up]=t;

}/*endif*/

}

t=x[pivot];

 x[pivot]=x[up];

 x[up]=t;

 quicksort(x,Lb,up-1);

 quicksort(x,up+1,Ub);

}

}

int main()

{

 int n,i;

 int list[30];

cout<<"enter no of elements\n";

cin>>n;

cout<<"enter "<<n<<" numbers ";

for(i=0;i<n;i++)

cin>>list[i];

quicksort(list,0,n-1);

Data Structures Lab 2019-2020

Department of IT Page 81

cout<<" after sorting\n";

for(i=0;i<n;i++)

cout<<list[i]<<endl;

return 0;

}

Output:

Signature of Faculty

Data Structures Lab 2019-2020

Department of IT Page 82

WEEK-8 DATE:

 Write a program that implements the following

i) Insertion sort

ii) Merge sort

iii) Heap sort.

(i)Insertion Sort:

 It iterates, consuming one input element each repetition, and growing a

sorted output list. Each iteration, insertion sort removes one element from the input

data, finds the location it belongs within the sorted list, and inserts it there. It repeats

until no input elements remain.

Algorithm:

Step 1: start

Step 2: for i ← 1 to length(A)

Step 3: j ← i

Step 4: while j > 0 and A[j-1] > A[j]

Step 5: swap A[j] and A[j-1]

Step 6: j ← j - 1

Step 7: end while

Step 8: end for

 Step 9: stop

Source code: Program to implement Insertion Sort

#include<iostream>

using namespace std;

void insertion_sort(int a[],int n)

{

int i,t,pos;

for(i=0;i<n;i++)

Data Structures Lab 2019-2020

Department of IT Page 83

{

t=a[i];

pos=i;

while(pos>0&&a[pos-1]>t)

{

a[pos]=a[pos-1];

pos--;

}

a[pos]=t;

}

}

int main()

{

 int n,i;

 int list[30];

cout<<"enter no of elements\n";

cin>>n;

cout<<"enter "<<n<<" numbers ";

for(i=0;i<n;i++)

cin>>list[i];

insertion_sort(list,n);

cout<<" after sorting\n";

for(i=0;i<n;i++)

cout<<list[i]<<endl;

 return 0;

}

Output:

Signature of Faculty

Data Structures Lab 2019-2020

Department of IT Page 84

ii)Merge sort:

 Merge sort is an O(n log n) comparison-based sorting algorithm. It is stable, meaning

that it preserves the input order of equal elements in the sorted output. It is an example of the

divide and conquer algorithmic paradigm.

 Merge sort is so inherently sequential that it's practical to run it using slow tape drives

as input and output devices. It requires very little memory, and the memory required does not

change with the number of data elements.

If you have four tape drives, it works as follows:

1. Divide the data to be sorted in half and put half on each of two tapes.

2. Merge individual pairs of records from the two tapes; write two-record chunks

 alternately to each of the two output tapes.

3. Merge the two-record chunks from the two output tapes into four-record

 chunks; write these alternately to the original two input tapes.

4. Merge the four-record chunks into eight-record chunks; write these alternately

 to the original two output tapes.

5. Repeat until you have one chunk containing all the data, sorted --- that is, for

 log n passes, where n is the number of records.

 Conceptually, merge sort works as follows:

1. Divide the unsorted list into two sublists of about half the size.

2. Divide each of the two sublists recursively until we have list sizes of length 1,

 in which case the list itself is returned.

3. Merge the two sublists back into one sorted list.

Source code:To implement Merge Sort

#include<iostream.h>

 using namespace std;

Data Structures Lab 2019-2020

http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Merge_algorithm

Department of IT Page 85

#define max 15

 template<class T>

void merge(T a[],int l,int m,int u)

{

 T b[max];

 int i,j,k;

 i=l; j=m+1; k=l;

 while((i<=m)&&(j<=u))

{

if(a[i]<=a[j])

{

b[k]=a[i];

++i;

}

else

{

b[k]=a[j];

++j;

 }

++k;

}

if(i>m)

{

while(j<=u)

{

b[k]=a[j];

++j;

++k;

}

}

else

{

Data Structures Lab 2019-2020

Data Structures Lab 2019-2019

Department of IT Page 86

while(i<=m)

{

b[k]=a[i];

++i;

++k;

}

}

for(int r=l;r<=u;r++)

a[r]=b[r];

}

template <class T>

void mergesort(T a[],int p,int q)

{

int mid;

if(p<q)

{

mid=(p+q)/2;

mergesort(a,p,mid);

mergesort(a,mid+1,q);

merge(a,p,mid,q);

}

}

Data Structures Lab 2019-2020

Department of IT Page 87

int main()

{

int n,i;

int list[30];

cout<<"enter no of elements\n";

cin>>n;

cout<<"enter "<<n<<" numbers ";

for(i=0;i<n;i++)

cin>>list[i];

mergesort (list,0,n-1);

cout<<" after sorting\n";

for(i=0;i<n;i++)

cout<<list[i]<<endl;

return 0;

}

Output:

Signature of Faculty

Data Structures Lab 2019-2020

Department of IT Page 88

(iii)HEAP SORT

Heap sort is a method in which a binary tree is used. In this method first the heap is created

using binary tree and then heap is sorted using priority queue.

Source code:C++ program for implementation of Heap Sort

#include <iostream>

using namespace std;

// To heapify a subtree rooted with node i which is

// an index in arr[]. n is size of heap

void heapify(int arr[], int n, int i)

{

int largest = i; // Initialize largest as root

int l = 2*i + 1; // left = 2*i + 1

int r = 2*i + 2; // right = 2*i + 2

// If left child is larger than root

 if (l < n && arr[l] > arr[largest])

 largest = l;

// If right child is larger than largest so far

 if (r < n && arr[r] > arr[largest])

largest = r;

// If largest is not root

if (largest != i)

{

 swap(arr[i], arr[largest]);

// Recursively heapify the affected sub- tree

 heapify(arr, n, largest);

}

}

Data Structures Lab 2019-2020

Data Structures Lab 2019-2019

Department of IT Page 89

// main function to do heap sort

 void heapSort(int arr[], int n)

 {

 //Build heap (rearrange array)

 for (int i = n / 2 - 1; i >= 0; i--)

heapify(arr, n, i);

// One by one extract an element from heap

 for (int i=n-1; i>=0; i--)

 {

 //Move current root to end

 swap(arr[0], arr[i]);

 //call max heapify on the reduced heap

 heapify(arr, i, 0);

 }

}

/* A utility function to print array of size n */

void printArray(int arr[], int n)

{

for (int i=0; i<n; ++i)

cout << arr[i] << " ";

cout << "\n";

}

int main()

{

 int n,i;

 int list[30];

Data Structures Lab 2019-2020

Department of IT Page 90

cout<<"enter no of elements\n";

cin>>n;

cout<<"enter "<<n<<" numbers ";

for(i=0;i<n;i++)

cin>>list[i];

heapSort(list, n);

cout << "Sorted array is \n";

 printArray(list, n);

 return 0;

}

Output:

Signature of the Faculty

Data Structures Lab 2019-2020

Data Structures Lab 2019-2019

Department of IT Page 91

 WEEK-9 DATE:

 Aim: Write a program to implement all the functions of a dictionary (ADT)using Linked List.

Description:

Dictionary

 The most common objective of computer programs is to store and retrieve data. Much of

this book is about efficient ways to organize collections of data records so that they can be stored

and retrieved quickly. In this section we describe a simple interface for such a collection, called

a dictionary.

 The dictionary ADT provides operations for storing records, finding records, and

removing records from the collection. This ADT gives us a standard basis for comparing various

data structures. Loosly speaking, we can say that any data structure that supports insert, search,

and deletion is a "dictionary".

 Dictionaries depend on the concepts of a search key and comparable objects. To

implement the dictionary's search function, we will require that keys be totally ordered. Ordering

fields that are naturally multi-dimensional, such as a point in two or three dimensions, present

special opportunities if we wish to take advantage of their multidimensional nature. This problem

is addressed byspatial data structures.

Source code: To to implement all the functions of a dictionary (ADT)

#include<stdlib.h>

#include<iostream.h>

class node

{

 public: int key;

int value;

node*next;

Data Structures Lab 2019-2020

https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/Glossary.html#term-dictionary
https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/Glossary.html#term-search-key
https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/Comparison.html#comparison
https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/Glossary.html#term-total-order
https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/Spatial.html#spatial

Department of IT Page 92

 };

class dictionary:public node

{

 int k,data;

 node *head;

 public: dictionary();

void insert_d();

void delete_d();

void display_d();

};

dictionary::dictionary()

{head=NULL;

}

//code to push an val into dictionary;

 void dictionary::insert_d()

{

node *p,*curr,*prev;

 cout<<"Enter an key and value to be inserted:";

 cin>>k;

cin>>data;

p=new node;

p->key=k;

 p->value=data;

 p->next=NULL;

 if(head==NULL)

 head=p;

else

{

curr=head;

Data Structures Lab 2019-2020

Department of IT Page 93

while((curr->key<p->key)&&(curr->next!=NULL))

{

prev=curr;

 curr=curr->next;

}

if(curr->next==NULL)

{

if(curr->key<p->key)

{

curr->next=p;

prev=curr;

}

else

{

p->next=prev->next;

prev->next=p;

}

}

else

{

p->next=prev->next;

prev->next=p;

}

cout<<"\nInserted into dictionary Sucesfully....\n";

Data Structures Lab 2019-2020

Department of IT Page 94

}

}

void dictionary::delete_d()

{

 node*curr,*prev;

cout<<"Enter key value that you want to delete...";

cin>>k;

if(head==NULL)

cout<<"\ndictionary is Underflow";

else

{

 curr=head;

 while(curr!=NULL)

 {

 if(curr->key==k)

 break;

 prev=curr;

 curr=curr->next;

 }

}

if(curr==NULL)

cout<<"Node not found...";

else

{

 if(curr==head)

 head=curr->next;

Data Structures Lab 2019-2020

Department of IT Page 95

else

prev->next=curr->next;

 delete curr;

 cout<<"Item deleted from dictionary...";

}

}

void dictionary::display_d()

{

 node*t;

 if(head==NULL)

cout<<"\ndictionary Under Flow";

else

{

cout<<"\nElements in the dictionary are....\n";

t=head;

 while(t!=NULL)

 {

cout<<t->key<<","<<t->value;

t=t->next;

 }

}

}

int main()

{

 int choice;

 dictionary d1;

while(1)

Data Structures Lab 2019-2020

Department of IT Page 96

{

cout<<"\n\n***Menu for Dictrionay operations***\n\n";

cout<<"1.Insert\n2.Delete\n3.DISPLAY\n4.EXIT\n";

cout<<"Enter Choice:";

cin>>choice;

switch(choice)

{

case 1: d1.insert_d();

break;

case 2: d1.delete_d();

break;

case 3: d1.display_d();

break;

case 4: exit(0);

default:cout<<"Invalid choice...Try again...\n";

}

}

}

Output:

Signature Of Faculty

Data Structures Lab 2019-2020

Department of IT Page 97

Signature of Faculty

 WEEK-10 DATE:

Aim:Write a C++ program to perform the following operations:

a) Insert an element into a binary search tree.

b) Delete an element from a binary search tree.

c) Search for a key element in a binary search tree.

Description:

Binary Search Tree:

 So to make the searching algorithm faster in a binary tree we will go for building the

binary search tree. The binary search tree is based on the binary search algorithm. While

creating the binary search tree the data is systematically arranged.

That means values at left sub-tree < root node value < right sub-tree values.

Source code: To implement Binary Search tree

#include<stdlib.h>

#include<iostream.h>

class node

{

public:

int data;

node*lchild;

node*rchild;

};

class bst:public node

 {

 int item;

 node *root;

 public: bst();

Data Structures Lab 2019-2020

Department of IT Page 98

void insert_node();

void delete_node();

void display_bst();

void inorder(node*);

 };

 bst::bst()

 {

 root=NULL;

 }

 void bst:: insert_node()

 {

 node *new_node,*curr,*prev;

new_node=new node;

cout<<"Enter data into new node";

cin>>item;

new_node->data=item;

new_node->lchild=NULL;

new_node->rchild=NULL;

if(root==NULL)

root=new_node;

else

{

 curr=prev=root;

 while(curr!=NULL)

 {

 if(new_node->data>curr->data)

{

Data Structures Lab 2019-2020

Department of IT Page 99

 prev=curr;

curr=curr->rchild;

}

else

{

 prev=curr;

 curr=curr->lchild;

 }

}

cout<<"Prev:"<<prev->data<<endl;

if(prev->data>new_node->data)

prev->lchild=new_node;

else

prev->rchild=new_node;

}

}

//code to delete a node

void bst::delete_node()

{

if(root==NULL)

cout<<"Tree is Empty";

else

{

int key;

 cout<<"Enter the key value to be deleted";

cin>>key;

node* temp,*parent,*succ_parent;

Data Structures Lab 2019-2020

Department of IT Page 100

temp=root;

while(temp!=NULL)

{

 if(temp->data==key)

{ //deleting node with two children

 if(temp->lchild!=NULL&&temp->rchild!=NULL)

 {//search for inorder sucessor

 node*temp_succ;

 temp_succ=temp->rchild;

while(temp_succ->lchild!=NULL)

{

 succ_parent=temp_succ;

 temp_succ=temp_succ->lchild;

 }

temp->data=temp_succ->data;

succ_parent->lchild=NULL;

 cout<<"Deleted sucess fully";

 }

//deleting a node having one left child

if(temp->lchild!=NULL&temp->rchild==NULL)

{

 if(parent->lchild==temp)

parent->lchild=temp->lchild;

else

parent->rchild=temp->lchild;

temp=NULL;

delete(temp);

cout<<"Deleted sucess fully";

return;

}

 //deleting a node having one right child

 if(temp->lchild==NULL&temp->rchild!=NULL)

{

Data Structures Lab 2019-2020

Department of IT Page 101

if(parent->lchild==temp)

parent->lchild=temp->rchild;

else

parent->rchild=temp->rchild;

temp=NULL;

 delete(temp);

cout<<"Deleted sucess fully";

return;

}

//deleting a node having no child

 if(temp->lchild==NULL&temp->rchild==NULL)

{

if(parent->lchild==temp)

parent->lchild=NULL;

 else

parent->rchild=NULL;

 temp=NULL;

 delete(temp);

 cout<<"Deleted sucess fully";

 return;

}

}

else if(temp->data<key)

 {

 parent=temp;

 temp=temp->rchild;

 }

else if(temp->data>key)

 {

 parent=temp;

 temp=temp->lchild;

 }

Data Structures Lab 2019-2020

Department of IT Page 102

}//end while

}//end if

}//end delnode func

 void bst::display_bst()

 {

 if(root==NULL)

cout<<"\nBST Under Flow";

 else

inorder(root);

 }

void bst::inorder(node*t)

{

if(t!=NULL)

{

inorder(t->lchild);

cout<<" "<<t->data;

inorder(t->rchild);

}

}

int main()

{

 bst bt;

 int i;

while(1)

{

cout<<"****BST Operations****";

cout<<"\n1.Insert\n2.Display\n3.del\n4.exit\n";

Data Structures Lab 2019-2020

Department of IT Page 103

cout<<"Enter Choice:";

cin>>i;

switch(i)

{

 case 1:bt.insert_node();

 break;

 case 2:bt.display_bst();

 break;

 case 3:bt.delete_node();

 break;

 case 4:exit(0);

 default: cout<<"Enter correct choice";

}

}

}

Output:

Signature of Faculty

Data Structures Lab 2019-2020

Department of IT Page 104

 WEEK-11 : DATE:

 Write C++ programs that use recursive functions to traverse the given

binary tree in a)Preorder b) Inorder and c) Postorder

Aim: To implement Binary tree traversals(PreOrder,InOrder,PostOrder)

Description:

Binary tree traversals

 It is often convenient to a single list containing all the nodes in a tree. This list may

correspond to an order in which the nodes should be visited when the tree is being searched.

We define three such lists here, the preorder, postorder and inorder traversals of the tree.

The definitions themselves are recursive:

 if T is the empty tree, then the empty list is the preorder, the inorder and the

postorder traversal associated with T;

 if T = [N] consists of a single node, the list [N] is the preorder, the inorder and

the postorder traversal associated with T;

 otherwise, T contains a root node n, and subtrees T1,..., Tn: and

 the preorder traversal of the nodes of T is the list containing N, followed, in

order by the preorder traversals of T1..., Tn;

 the inorder traversal of the nodes of T is the list containing the inorder

traversal of T1 followed by N followed in order by the inorder traversal of each

of T2,..., Tn.

 the postorder traversal of the nodes of T is the list containing in order the

postorder traversal of each of T1,..., Tn, followed by N.

Source code:

#include<stdlib.h>

#include<iostream.h>

Data Structures Lab 2019-2020

Department of IT Page 105

class node

{

public:

int data;

node*Lchild;

node*Rchild;

};

class bst

{

int item;

node *root;

 public: bst();

void insert_node();

void delete_node();

void display_bst();

void preeorder(node*);

void inorder(node*);

void postorder(node*);

};

bst::bst()

{

root=NULL;

}

void bst:: insert_node()

Data Structures Lab 2019-2020

Department of IT Page 106

{

 node *new_node,*curr,*prev;

new_node=new node;

cout<<"Enter data into new node";

cin>>item;

new_node->data=item;

new_node->Lchild=NULL;

new_node->Rchild=NULL;

if(root==NULL)

root=new_node;

else

{

curr=prev=root;

while(curr!=NULL)

{

if(new_node->data>curr->data)

{

prev=curr;

curr=curr->Rchild;

}

else

{

prev=curr;

Data Structures Lab 2019-2020

Department of IT Page 107

curr=curr->Lchild;

}

}

cout<<"Prev:"<<prev->data<<endl;

if(prev->data>new_node->data)

prev->Lchild=new_node;

else

prev->Rchild=new_node;

}

}

//code to delete a node

void bst::delete_node()

{

 if(root==NULL)

cout<<"Tree is Empty";

 else

 {

 int key;

 cout<<"Enter the key value to be deleted";

 cin>>key;

 node* temp,*parent,*succ_parent;

 temp=root;

 while(temp!=NULL)

 {

Data Structures Lab 2019-2020

Department of IT Page 108

if(temp->data==key)

 { //deleting node with two children

 if(temp->Lchild!=NULL&&temp->Rchild!=NULL)

 {//search for sucessor

 node*temp_succ;

 temp_succ=temp->Rchild;

 while(temp_succ->Lchild!=NULL)

 {

succ_parent=temp_succ;

temp_succ=temp_succ->Lchild;

}

temp->data=temp_succ->data;

succ_parent->Lchild=NULL;

cout<<"Deleted sucess fully";

return;

}

//deleting a node having one left child

if(temp->Lchild!=NULL&temp->Rchild==NULL)

{

if(parent->Lchild==temp)

parent->Lchild=temp->Lchild;

else

parent->Rchild=temp->Lchild;

temp=NULL;

delete(temp);

Data Structures Lab 2019-2020

Department of IT Page 109

cout<<"Deleted sucess fully";

return;

}

 //deleting a node having one right child

 if(temp->Lchild==NULL&temp->Rchild!=NULL)

 {

 if(parent->Lchild==temp)

parent->Lchild=temp->Rchild;

else

parent->Rchild=temp->Rchild;

temp=NULL;

delete(temp);

cout<<"Deleted sucess fully";

return;

 }

 //deleting a node having no child

 if(temp->Lchild==NULL&temp->Rchild==NULL)

{

if(parent->Lchild==temp)

parent->Lchild=NULL;

else

parent->Rchild=NULL;

temp=NULL;

delete(temp);

 cout<<"Deleted sucess fully";

 return;

}

 }

Data Structures Lab 2019-2020

Department of IT Page 110

else if(temp->data<key)

{

parent=temp;

temp=temp->Rchild;

}

else if(temp->data>key)

{

parent=temp;

temp=temp->Lchild;

}

}//end while

}//end if

}//end delnode func

void bst::display_bst()

{

if(root==NULL)

cout<<"\nBinary Search Tree is Under Flow";

else

{

 int ch;

 cout<<"\t\t**Binart Tree Traversals**\n";

 cout<<"\t\t1.Preeorder\n\t\t2.Inorder\n\t\t3:PostOrder\n";

 cout<<"\t\tEnter Your Chice:";

 cin>>ch;

switch(ch)

Data Structures Lab 2019-2020

Department of IT Page 111

 {

 case 1: cout<<"Pree order Tree Traversal\n ";

 preeorder(root);

 break;

 case 2: cout<<"Inorder Tree Traversal is\n ";

 inorder(root);

 break;

 case 3: cout<<"Inorder Tree Traversal is\n";

 postorder(root);

 break;

}

}

}

void bst::inorder(node*t)

{

if(t!=NULL)

{

inorder(t->Lchild);

cout<<" "<<t->data;

inorder(t->Rchild);

}

}

void bst::preeorder(node*t)

Data Structures Lab 2019-2020

Department of IT Page 112

 {

 if(t!=NULL)

 {

 cout<<" "<<t->data;

 preeorder(t->Lchild);

 preeorder(t->Rchild);

 }

}

void bst::postorder(node*t)

{

if(t!=NULL)

{

postorder(t->Lchild);

postorder(t->Rchild);

cout<<" "<<t->data;

}

}

int main()

{

bst bt;

int i;

while(1)

 {

cout<<"\n\n***Operations Binary Search Tree***\n";

cout<<"1.Insert\n2.Display\n3.del\n4.exit\n"; cout<<"Enter Choice:";

cin>>i;

switch(i)

Data Structures Lab 2019-2020

Department of IT Page 113

{

case 1:bt.insert_node();

break;

case 2:bt.display_bst();

break;

case 3:bt.delete_node();

break;

case 4:exit(0);

default:cout<<"Enter correct choice";

}

}

}

Output :

Signature of the Faculty

Data Structures Lab 2019-2020

Department of IT Page 114

 WEEK -12 DATE:

Aim: Write a C++ program to perform the following operations

 a)Insertion into an AVL-tree b) Deletion from an AVL-tree

 c) Search for a key element in a AVL tree.

Description:

AVL Tree

 AVL tree is a height-balanced binary search tree. That means, an AVL tree is also a

binary search tree but it is a balanced tree. A binary tree is said to be balanced if, the difference

between the heights of left and right subtrees of every node in the tree is either -1, 0 or +1. In

other words, a binary tree is said to be balanced if the height of left and right children of every

node differ by either -1, 0 or +1. In an AVL tree, every node maintains an extra information

known as “Balance factor”.

 The AVL tree was introduced in the year 1962 by G.M. Adelson-Velsky and E.M.

Landis. An AVL tree is defined as follows...

An AVL tree is a balanced binary search tree. In an AVL tree, balance factor of every node

is either -1, 0 or +1.

 Balance factor of a node is the difference between the heights of the left and right

subtrees of that node. The balance factor of a node is calculated either height of left subtree -

height of right subtree (OR) height of right subtree - height of left subtree.

In the following explanation, we calculate as follows...

Balance factor = heightOfLeftSubtree - heightOfRightSubtree

Example of AVL Tree

The above tree is a binary search tree and every node is satisfying balance factor condition. So

this tree is said to be an AVL tree.

Data Structures Lab 2019-2020

Department of IT Page 115

Operations on an AVL Tree

The following operations are performed on AVL tree...

1. Search

2. Insertion

3. Deletion

1.Search Operation in AVL Tree

 In an AVL tree, the search operation is performed with O(log n) time complexity. The

search operation in the AVL tree is similar to the search operation in a Binary search tree. We

use the following steps to search an element in AVL tree...

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the value of root node in the tree.

Step 3 - If both are matched, then display "Given node is found!!!" and terminate the

 function

Step 4 - If both are not matched, then check whether search element is smaller or larger

 than that node value.

Step 5 - If search element is smaller, then continue the search process in left subtree.

Step 6 - If search element is larger, then continue the search process in right subtree.

Step 7 - Repeat the same until we find the exact element or until the search element is

 compared with the leaf node.

Step 8 - If we reach to the node having the value equal to the search value, then display

 "Element is found" and terminate the function.

Step 9 - If we reach to the leaf node and if it is also not matched with the search element,

 then display "Element is not found" and terminate the function.

Data Structures Lab 2019-2020

Department of IT Page 116

2.Insertion Operation in AVL Tree

 In an AVL tree, the insertion operation is performed with O(log n) time complexity. In

AVL Tree, a new node is always inserted as a leaf node. The insertion operation is performed as

follows...

Step 1 - Insert the new element into the tree using Binary Search Tree insertion logic.

Step 2 - After insertion, check the Balance Factor of every node.

Step 3 - If the Balance Factor of every node is 0 or 1 or -1 then go for next operation.

Step 4 - If the Balance Factor of any node is other than 0 or 1 or -1 then that tree is said

 to be imbalanced. In this case, perform suitable Rotation to make it balanced

 and go for next operation.

3.Deletion Operation in AVL Tree

 The deletion operation in AVL Tree is similar to deletion operation in BST. But after

every deletion operation, we need to check with the Balance Factor condition. If the tree is

balanced after deletion go for next operation otherwise perform suitable rotation to make the tree

Balanced.

Aim: To implement AVL tree

Source code:

 #include <iostream.h>

 #include <stdlib.h>

 #include conio.h>

 struct node

{

 int element;

 node *left;

 node *right;

 int height;

};

Data Structures Lab 2019-2020

Department of IT Page 117

typedef struct

 node *np;

class bstree

{

 public:

 void insert(int,np&);

 void del(int, np &);

 int deletemin(np &);

 void find(int,np &);

 np findmin(np);

 np findmax(np);

 void copy(np &,np &);

 void makeempty(np&);

 np nodecopy(np &);

 void preorder(np);

 void inorder(np);

 void postorder(np);

 int bsheight(np);

 np srl(np &);

 np drl(np &);

 np srr(np &);

 np drr(np &);

 int max(int,int);

 int nonodes(np);

};

//Inserting a node

void bstree::insert(int x,np &p)

{

 if (p == NULL)

 {

Data Structures Lab 2019-2020

Department of IT Page 118

p = new node;

p->element = x;

p->left=NULL;

p->right = NULL;

p->height=0;

if (p==NULL)

cout<<"Out of Space";

}

else

{

if (x<p->element)

{

insert(x,p->left);

if ((bsheight(p->left) - bsheight(p->right))==2)

{

if (x < p->left->element)

p=srl(p);

else

p = drl(p);

}

}

else if (x>p->element)

{

insert(x,p->right);

Data Structures Lab 2019-2020

Department of IT Page 119

if ((bsheight(p->right) - bsheight(p->left))==2)

{

if (x > p->right->element)

p=srr(p);

else

p = drr(p);

}

}

else

cout<<"Element Exists";

}

int m,n,d;

m=bsheight(p->left);

n=bsheight(p->right);

d=max(m,n);

p->height = d + 1;

}

//Finding the Smallest

np bstree::findmin(np p)

{

if (p==NULL)

{

cout<<"Empty Tree ";

return p;

Data Structures Lab 2019-2020

Department of IT Page 120

}

else

{

while(p->left !=NULL)

p=p->left;

return p;

}

}

//Finding the Largest

np bstree::findmax(np p)

{

if (p==NULL)

{

cout<<"Empty Tree ";

return p;

}

else

{

while(p->right !=NULL)

p=p->right;

return p;

}

}

Data Structures Lab 2019-2020

Department of IT Page 121

//Finding an element

void bstree::find(int x,np &p)

{

if (p==NULL)

cout<<" Element not found ";

else

if (x < p->element)

find(x,p->left);

else

 if (x>p->element)

 find(x,p->right);

 else

 cout<<" Element found !";

}

//Copy a tree

void bstree::copy(np &p,np &p1)

{

makeempty(p1);

p1 = nodecopy(p);

}

//Make a tree empty

void bstree::makeempty(np &p)

{

Data Structures Lab 2019-2020

Department of IT Page 122

np d;

if (p != NULL)

{

makeempty(p->left);

makeempty(p->right);

d=p;

free(d);

p=NULL;

}

}

//Copy the nodes

np bstree::nodecopy(np &p)

{

np temp;

if (p==NULL)

return p;

else

{

temp = new node;

temp->element = p->element;

temp->left = nodecopy(p->left);

temp->right = nodecopy(p->right);

return temp;

Data Structures Lab 2019-2020

Department of IT Page 123

}

}

//Deleting a node

void bstree::del(int x,np &p)

{

np d;

if (p==NULL)

cout<<"Element not found ";

else if (x < p->element)

del(x,p->left);

else if (x > p->element)

 del(x,p->right);

else if ((p->left == NULL) && (p->right == NULL))

{

d=p;

free(d);

p=NULL;

cout<<" Element deleted !";

}

else if (p->left == NULL)

{

d=p;

free(d);

Data Structures Lab 2019-2020

Department of IT Page 124

p=p->right;

cout<<" Element deleted !";

}

else if (p->right == NULL)

{

d=p;

p=p->left;

free(d);

cout<<" Element deleted !";

}

else

p->element = deletemin(p->right);

}

int bstree::deletemin(np &p)

{

int c;

cout<<"inside deltemin";

if (p->left == NULL)

{

c=p->element;

p=p->right;

return c;

Data Structures Lab 2019-2020

Department of IT Page 125

}

else

{

c=deletemin(p->left);

return c;

}

}

void bstree::preorder(np p)

{

if (p!=NULL)

{

cout<<p->element<<"-->";

preorder(p->left);

preorder(p->right);

}

}

//Inorder Printing

void bstree::inorder(np p)

{

if (p!=NULL)

{

inorder(p->left);

cout<<p->element<<"-->";

inorder(p->right);

Data Structures Lab 2019-2020

Department of IT Page 126

}

}

//PostOrder Printing

void bstree::postorder(np p)

{

if (p!=NULL)

{

postorder(p->left);

postorder(p->right);

cout<<p->element<<"-->";

}

}

int bstree::max(int value1, int value2)

{

return ((value1 > value2) ? value1 : value2);

}

int bstree::bsheight(np p)

{

int t;

if (p == NULL)

return -1;

else

{

t= p->height;

Data Structures Lab 2019-2020

Data Structures Lab 2019-2019

Department of IT Page 127

return t;

}

}

np bstree:: srl(np &p1)

{

np p2;

 p2 = p1->left;

p1->left = p2->right;

p2->right = p1;

 p1->height = max(bsheight(p1->left),bsheight(p1->right)) + 1;

 p2->height = max(bsheight(p2->left),p1->height) + 1; return p2;

}

np bstree:: srr(np &p1)

{

np p2;

p2 = p1->right;

p1->right = p2->left;

p2->left = p1;

 p1->height = max(bsheight(p1->left),bsheight(p1->right)) + 1;

 p2->height = max(p1->height,bsheight(p2->right)) + 1;

 return p2;

}

np bstree:: drl(np &p1)

{

p1->left=srr(p1->left);

return srl(p1);

Data Structures Lab 2019-2020

Department of IT Page 128

}

np bstree::drr(np &p1)

{

p1->right = srl(p1->right);

return srr(p1);

}

int bstree::nonodes(np p)

{

int count=0;

if (p!=NULL)

{

nonodes(p->left);

nonodes(p->right);

count++;

}

return count;

}

int main()

{

//clrscr();

np root,root1,min,max;//,flag;

int a,choice,findele,delele,leftele,rightele,flag;

Data Structures Lab 2019-2020

Department of IT Page 129

char ch='y';

bstree bst;

//system("clear");

root = NULL;

root1=NULL;

while(1)

{

 cout<<" \nAVL Tree\n";

 cout<<" ========\n";

cout<<"1.Insertion\n2.FindMin\n";

cout<<"3.FindMax\n4.Find\n5.Copy\n";

cout<<"6.Delete\n7.Preorder\n8.Inorder\n";

cout<<"9.Postorder\n10.height\n11.EXIT\n";

cout<<"Enter the choice:";

cin>>choice;

switch(choice)

{

case 1:

cout<<"New node's value ?";

cin>>a;

bst.insert(a,root);

break;

case 2:

Data Structures Lab 2019-2020

Department of IT Page 130

if (root !=NULL)

{

 min=bst.findmin(root);

 cout<<"Min element : "<<min->element;

}

break;

case 3:

if (root !=NULL)

{

 max=bst.findmax(root);

 cout<<"Max element : "<<max->element;

}

break;

case 4:

cout<<"Search node : ";

cin>>findele;

if (root != NULL)

bst.find(findele,root);

break;

case 5:

bst.copy(root,root1);

 bst.inorder(root1);

break;

case 6:

Data Structures Lab 2019-2020

Department of IT Page 131

cout<<"Delete Node ?";

cin>>delele;

bst.del(delele,root);

bst.inorder(root);

break;

case 7:

cout<<" Preorder Printing... :";

bst.preorder(root);

break;

case 8:

 cout<<" Inorder Printing.... :";

 bst.inorder(root);

 break;

case 9:

 cout<<" Postorder Printing... :";

 bst.postorder(root);

 break;

case 10:

cout<<" Height and Depth is ";

cout<<bst.bsheight(root);

//cout<<"No. of nodes:"<<bst.nonodes(root);

break;

case 11:exit(0);

}

}

Data Structures Lab 2019-2020

Department of IT Page 132

return 0;

}

Output :

Signature of the Faculty

Department of IT Page 133

